

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
Pyskool documentation



	What is Pyskool?

	Installing and running Pyskool

	Playing Pyskool

	Example customisations

	General info

	Changelog








Technical reference



	Graphics

	Main ini file

	Game ini files

	Commands








API documentation


	Index

	Module Index










          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
What is Pyskool?

In 1984, Microsphere published Skool Daze [http://en.wikipedia.org/wiki/Skool_Daze], a game for the
Sinclair ZX Spectrum [http://en.wikipedia.org/wiki/ZX_Spectrum]. In 1985, the sequel Back to Skool [http://en.wikipedia.org/wiki/Back_to_Skool] was published.

Each game is based in a boys’ school (though Back to Skool adds a playground
and a girls’ school) and revolves around the antics of Eric, the hero. In Skool
Daze, Eric must steal his report card from the school safe - the combination of
which must be extracted from the teachers’ brains using flashing shields or, in
the case of the history teacher, post-hypnotic suggestion. In Back to Skool,
Eric must get his report card back into the school safe, this time with the
extra help provided by a water pistol, stinkbombs, a bike, mice, a frog and a
girlfriend.

Pyskool is a re-implementation of these classic games in Python and Pygame,
with the aim of making them easy to customise by editing a configuration file
or - for more advanced customisation - writing some Python code.

The latest version of Pyskool can always be obtained from
pyskool.ca [http://pyskool.ca/].


Licence and copyrights

Pyskool is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later
version. See the file ‘COPYING’ (distributed with Pyskool) for the full text of
the licence.

The copyright in the original ZX Spectrum game code and graphics for both Skool
Daze and Back to Skool is held by Microsphere Computer Services Ltd.







          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
Installing and running Pyskool


Requirements

Pyskool requires Python [https://www.python.org/downloads/] (version 2.7)
and Pygame [http://www.pygame.org/download.shtml] (version 1.8+).

On Linux/*BSD, Python and Pygame are available via the package management
system. Python is in the python package on all systems; Pygame is in the
python-pygame package on Debian-based distros and openSUSE, the pygame
package on Fedora, the devel/py-game port on FreeBSD and NetBSD, and the
devel/pygame port on OpenBSD.

Windows and Mac OS X users should take care to select the Pygame installer that
matches the version of Python that is installed.




Installing Pyskool

There are various ways to install the latest stable release of Pyskool:


	from the zip archive or tarball available at
pyskool.ca [http://pyskool.ca/?page_id=44]

	from the DEB package or RPM package available at pyskool.ca [http://pyskool.ca/?page_id=44]

	from PyPI [https://pypi.python.org/pypi/pyskool] by using
easy_install [https://pythonhosted.org/setuptools/easy_install.html] or
pip [http://www.pip-installer.org/]



If you choose the zip archive or tarball, note that Pyskool can be used
wherever it is unpacked: it does not need to be installed in any particular
location.

However, if you would like to install Pyskool as a Python package, you can do
so by using the supplied setup.py script. After installation, the required
images, ini files and sound files for each game will need to be created. This
can be done by using the --setup option; for example:

$ skool_daze.py --setup






Windows

To install Pyskool as a Python package on Windows, open a command prompt,
change to the directory where Pyskool was unpacked, and run the following
command:

> setup.py install





This should install the Pyskool game launcher scripts in
C:\Python2X\Scripts (assuming you have installed Python in C:\Python2X),
which means you can run them from anywhere (assuming you have added
C:\Python2X\Scripts to the Path environment variable).




Linux/*BSD/Mac OS X

To install Pyskool as a Python package on Linux/*BSD/Mac OS X, open a terminal
window, change to the directory where Pyskool was unpacked, and run the
following command as root:

# ./setup.py install





This should install the Pyskool game launcher scripts in /usr/local/bin (or
some other suitable location in your PATH), which means you can run them
from anywhere.






Running Pyskool


Windows

To run Pyskool in Skool Daze mode, double-click the skool_daze.py file in
the Pyskool directory. To run Pyskool in Back to Skool mode, double-click
back_to_skool.py.

If that doesn’t work, try the command line. Open a command prompt, change to
the Pyskool directory, and do:

> skool_daze.py





to run Pyskool in Skool Daze mode; or, to run Pyskool in Back to Skool mode:

> back_to_skool.py








Linux/*BSD/Mac OS X

To run Pyskool in Skool Daze mode, open a terminal window, change to the
Pyskool directory, and do:

$ ./skool_daze.py





or, to run Pyskool in Back to Skool mode:

$ ./back_to_skool.py










Pyskool data files

When skool_daze.py, back_to_skool.py or one of the other game launcher
scripts is executed, it looks for the following things:


	a file named pyskool.ini (the main ini file)

	a directory named images

	a directory named sounds

	a directory named ini/<game_name> (where <game_name> is skool_daze,
back_to_skool, or whatever)



Each of these things must be present in one of the following directories in
order for Pyskool to find it:


	the current working directory

	$HOME/.pyskool

	the directory containing the game launcher script

	/usr/share/pyskool

	$PACKAGE_DIR/data



$HOME refers to the user’s home directory. On Windows this is typically
C:\Users\username or C:\Documents and Settings\username.

$PACKAGE_DIR refers to the directory in which the pyskool package is
installed (as shown by the --package-dir command line option).

When you need a reminder of the locations that Pyskool searches for data files,
run one of the game launcher scripts with the --search-dirs option.

If Pyskool doesn’t start, run the game launcher script from the command line
and read the diagnostic messages that are printed to the console for clues
about what’s going wrong.

When Pyskool is running, it will dump screenshots to, save games to, and load
games from either $HOME/.pyskool (if it exists or can be created), or the
current working directory.




Command line options

skool_daze.py, back_to_skool.py and the other game launcher scripts support
the following command line options:


	--version - show the version number of Pyskool and exit

	-h or --help - show a summary of the available options

	-c or --cheat - enable cheat keys; equivalent to
--config=Cheat,1, this option overrides the Cheat parameter in the
[GameConfig] section

	--config=P,V - set the value of the configuration parameter P to
V; this option may be used multiple times

	--create-images - create the images required by the game and exit

	--create-ini - create the ini files required by the game in
$HOME/.pyskool/ini/<game_name> and exit

	--create-sounds - create the sound files required by the game in
$HOME/.pyskool/sounds and exit

	--force - overwrite existing images, ini files and sound files (when
using the --create-images, --create-ini, --create-sounds or
--setup option)

	-i INIDIR or --inidir=INIDIR - use ini files from a specified
directory

	-l SAVEFILE or --load=SAVEFILE - load a previously saved game

	--package-dir - show the path to the pyskool package directory and exit

	-q or --quick-start - start the game quickly by skipping the
scroll-skool-into-view and theme tune sequence; equivalent to
--config=QuickStart,1, this option overrides the QuickStart parameter
in the [GameConfig] section

	-r SAVEDIR or --load-last=SAVEDIR - load the most recently saved game
from the specified directory

	--sample-rate=RATE - set the sample rate of the sound files created by
--create-sounds (default: 44100)

	-s SCALE or --scale=SCALE - set the scale of the display; equivalent
to --config=Scale,SCALE, this option overrides the Scale parameter in
the [ScreenConfig] section

	--search-dirs - show the locations that Pyskool searches for data files
and exit

	--setup - create the images, ini files and sound files required by the
game in $HOME/.pyskool and exit



The --create-images option first looks for Skool Daze and Back to Skool
tape or snapshot files by the following names in $HOME/.pyskool:


	skool_daze.tzx

	skool_daze.sna

	skool_daze.z80

	skool_daze.szx

	back_to_skool.tzx

	back_to_skool.sna

	back_to_skool.z80

	back_to_skool.szx



If no such files are found, TZX files are downloaded from one of the sources
listed in images.ini and saved to $HOME/.pyskool. Then the required images
are built from the tape or snapshot files and saved to the appropriate
subdirectories under $HOME/.pyskool/images/originalx1.







          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
Playing Pyskool


Skool Daze mode


Original game instructions

In the role of our hero, Eric (or any other name you decide to call him and the
rest of the cast), you know that inside the staffroom safe are kept the school
reports. And, being Eric, you realise that you must at all costs remove your
report before it comes to the attention of the Headmaster.

The combination to the safe consists of four letters, each master knowing one
letter and the Headmaster’s letter always coming first. To get hold of the
combination, you first have to hit all the shields hanging on the school walls.
Trouble is, this isn’t as easy as it looks. Some of them can be hit by jumping
up. Others are more difficult. You could try and hit a shield by bouncing a
pellet off a master’s head whilst he is sitting on the ground. Or, being Eric,
you may decide to knock over one of the boys and, whilst he’s flattened, clamber
up on him so that you can jump higher.

OK. So all the shields are flashing wildly, disorientating the poor masters.
Knock them over now and, before they can stop themselves, they’ll reveal their
letter of the code. All except for the history master, of course, who because of
his great age and poor eyesight can’t be trusted to remember. His letter has
been implanted into his mind hypnotically. To make him reveal it, you must find
out the year he was born (which, in case you were wondering, changes each game).
Then, creep into a room before he gets there and, if the board is clean, write
it on the blackboard. When he goes into that room and sees his birthdate he
will, as if by post-hypnotic suggestion, give away his letter.

Now that you know all the letters of the combination, all you have to do is work
out which order they go in. You know that the Headmaster’s letter is always
first, but as for the other three...you’ll just have to try the various
possibilities. Find a clean blackboard and write out a combination.

Rush back to the staffroom and jump up to reach the safe with your hand. If
nothing happens, then the combination must be wrong, so you’d better find
another clean blackboard and try a different one.

With the safe open, your troubles still aren’t over, as the flashing shields are
rather a giveaway. To stop them flashing, you now have to hit all of them again.

Done it? Congratulations! You are now allowed, along with all your friends, to
move on to the next class at school. But remember, there will be reports at the
end of this term...




School Rules

Boys shall attend lessons as shown in the timetable at the bottom of the screen.
(Remember that because you cheated in the exams last year, you always go to the
same lessons as the swot.)

Boys do not score points by attending lessons, but may be given lines if caught
in the wrong place.

Boys who acquire over 10,000 lines shall be expelled immediately from the
school.

Boys are not allowed to enter the staffroom or the Headmaster’s study. Take
care.

At playtime, boys are supposed to be playing and not in any of the classrooms.

Boys shall not hit their schoolmates.

Boys shall not fire catapults.

Boys are expected to walk quietly in the corridors - they are not for running or
sitting in.

School dinners are compulsory.

Boys will be neat and polite at all times.






Back to Skool mode


Original game instructions

Having managed to steal your report during the last few skooldaze of term,
you’ve spent the whole holiday forging teachers’ signatures and handwriting to
make yourself look like the brightest, sweetest natured, most helpful little
soul ever to carry a satchel.

Now all you’ve got to do is get it back into the Head’s safe...

A couple of years ago, your elder brother had exactly the same problem and has
lent you his old copy of the School Rules, on which he’s scribbled some notes
in invisible ink. Holding the paper over a bonfire made from the swot’s cap,
you can just make out the following:


	Key to safe round nek of gurls hedmistris. She hates frogs.

	Put frog in cup in gurls kitchin so you can nock it down onto her hed.
Remmember the bike.

	Frogs ar kept in loked siense lab stor room. Combernasion letters held by
masters - get them drunk.

	Sherry in hedmistris’s cubord - only unloked wen sheez shure all the boys ar
back in skool.

	Fill water pistle by jumping up to botel. Put sherry in skool cups and use
catopult to nock cups onto masters.

	Stink boms - Hed will open window if you drop one wen heez near.

	Cairtaker - if you nock him out with a conker by firing catopult from top
window of skool, yool be able to get passed him.

	Bike - chaned to conker tree - 4 number combernasion has to be ritten on
blackbord to relees it. Each master nose 1 number - soke them with water by
nocking water-filled cups with catopult wilst they ar under.

	Water pistle and stink boms - hidden in desks. Remmember there ar desks in
the gurls skool too.

	Water makes flours grow.

	Catching mice is fun. Letting them go in the gurls skool is even funier.

	If you get lots of lines to do, try being ekstra nice to your gurlfrend!

	Only the Hed can open the study dore - yool have to jump up to reech the
safe.








Keys

The keys to move Eric around are:


	‘q’ or up arrow - go up stairs, or continue walking in the same direction

	‘a’ or down arrow - go down stairs, or continue walking in the same direction

	‘o’ or left arrow - left

	‘p’ or right arrow - right

	‘f’ - fire catapult

	‘h’ - hit

	‘j’ - jump

	‘s’ - sit/stand

	‘w’ - write on a blackboard (press Enter/Return to finish)



Eric always walks fast. In the original games Eric walked slow unless you held
down the shift key; I always held down the shift key, so didn’t feel motivated
to include a ‘slow mode’.

Other useful keys are:


	Escape - quit the game

	End - pause/resume

	Insert - take a screenshot

	F2 - save the game

	F6 - load the most recently saved game

	F11 - switch between full-screen and windowed mode

	F12 - show/hide the menu



Use the up and down arrow keys to move between items in the menu, and press
Enter or the space bar to execute a menu item.


Back to Skool mode

Back to Skool mode also uses the following keys:


	‘c’ - catch a mouse or frog

	‘d’ - drop a stinkbomb

	‘g’ - fire the water pistol

	‘m’ - mount the bike

	‘o’ - open a desk (while sitting at one)

	‘r’ - release mice

	‘t’ - throw away the water pistol



To pedal the bike, use the left and right arrow keys (or ‘o’ and ‘p’). Use the
up arrow key (or ‘q’) to stand on the saddle, and the down arrow key (or ‘a’)
to dismount. You can jump while standing on the saddle by pressing ‘j’ or the
up arrow key (or ‘q’).









          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
Example customisations

So now you know everything there is to know about the ini files and command
lists, you’re ready to don your ‘modding’ hat and get customising. Right? Well,
if not, you might want to follow the example customisations below to get a feel
for what’s possible.


Cursing CREAK

Maybe the simplest thing to customise is what the characters say. In this
example we customise Mr Creak’s sit down message (i.e. how he tells the kids to
sit down when it’s time to start a lesson).

To do this, find the [SitDownMessages] section in skool_daze/messages.ini
and edit the line:

CREAK, BE QUIET AND SEATED YOU NASTY LITTLE BOYS





so that it reads:

CREAK, ARSES ON SEATS YOU SCUMMY LITTLE BUGGERS





(or whatever other polite request you’d like to see Mr Creak utter). Then run
skool_daze.py and giggle like a schoolboy (or girl) as the profanities pour
from the history teacher’s mouth.




Blackboard blasphemy

An equally simple and giggle-inducing trick is to change what the characters
write on the blackboards. In this example we’ll modify Mr Withit’s blackboard
messages in Back to Skool.

Open up back_to_skool/messages.ini and find the
[BlackboardMessages WITHIT] section. In there you will see the following
messages:

ARTESIAN^WELLS
THE DOLDRUMS
TASTY^GEYSERS
THE GREEN^REVOLUTION
TREACLE^MINING
FROG FARMING





For fun, you can replace these messages with something more interesting, or add
more messages (having only six to choose from makes Mr Withit a dull man). Note
that the ^ character will be replaced with a newline.

Then run back_to_skool.py and smile with satisfaction as Mr Withit complies
with your particular blackboard message whims.




800 LINES PERKINS

Did you ever think it was unfair that the little kids in Skool Daze (i.e. not
Eric, the swot, the tearaway or the bully) never got lines? Eric would down a
teacher with a catapult pellet, but any little kids in the vicinity could
breeze past the teacher with complete impunity while Eric (or, if he was lucky,
one of the other big kids) got slapped in the face with a bunch of lines.

Well this is Pyskool, and we can change all that. To make the little kids in
Skool Daze potential lines recipients, go to the [Characters] section in
skool_daze/sprites.ini and find the lines corresponding to the little boys:

BOY01, PERKINS, BOY, WALK0, -1, (43, 17), (1, 1), F
BOY02, GIBSON, BOY, WALK0, 1, (44, 17), (1, 1), F
BOY03, FANSHAW, BOY, WALK0, -1, (45, 17), (1, 1), F
...





The last field in each line (which contains F by default) is the character
flags field. The character flag that turns a character into a potential lines
recipient is R. So add that flag to each line, thus:

BOY01, PERKINS, BOY, WALK0, -1, (43, 17), (1, 1), FR
BOY02, GIBSON, BOY, WALK0, 1, (44, 17), (1, 1), FR
BOY03, FANSHAW, BOY, WALK0, -1, (45, 17), (1, 1), FR
...





Now run skool_daze.py, find a teacher milling about with a bunch of little
kids, let rip with the catapult, and experience the satisfaction of seeing the
hitherto nameless ones get their come-uppance.




Punch the pedagogue

The teachers in Skool Daze and Back to Skool - well, Mr Wacker and Mr Creak in
particular - were always asking for a smack. Unfortunately, in the original
games teachers were inexplicably impervious to Eric’s pugilistic efforts. Eric
could always whip out his catapult and send a teacher to the floor with a
pellet, but it’s not quite the same thing.

Anyway, with Pyskool, you get to change the rules. To make the teachers
punchable with effect, open up skool_daze/sprites.ini or
back_to_skool/sprites.ini and go to the [Characters] section. There you
will find the lines corresponding to the teachers; in skool_daze/sprites.ini
they look like this:

WACKER, MR WACKER/Sir, WACKER, WALK0, -1, (10, 17), (1, 0), ALPSTW
ROCKITT, MR ROCKITT/Sir, ROCKITT, WALK0, -1, (10, 17), (1, 0), ALPSTW
WITHIT, MR WITHIT/Sir, WITHIT, WALK0, -1, (10, 17), (1, 0), ALPSTW
CREAK, MR CREAK/Sir, CREAK, WALK0, -1, (10, 17), (1, 0), ALPSTW





The last field in each of these lines is the flags field (see
[Characters]). To make a teacher punchable, we need to add the F flag.
For example:

WACKER, MR WACKER/Sir, WACKER, WALK0, -1, (10, 17), (1, 0), AFLPSTW





Make the change for each teacher you’d like to see Eric (and, as a side effect,
the bully too) be able to punch, and off you go and get your long-awaited
revenge.




History in the Map Room

A somewhat more involved customisation is creating a new lesson. In this example
we’ll create a lesson where Mr Creak teaches Eric in the Map Room. In the
original Skool Daze, Mr Creak never taught anywhere but in the Reading and White
Rooms, so it’ll be good for him to stretch his ageing legs and get on over to
the Map Room.


Adding an entry to the timetable

First we are going to add an entry to the [Timetable] section. So, open up
skool_daze/lessons.ini, head over to the [Timetable] section, and insert
a new lesson ID or replace an existing one - preferably near the top, so you
don’t have to flick through too many lessons in Pyskool in order to test it.
The top few lessons in the stock lessons.ini are:

[Timetable]
Playtime-4
Withit-MapRoom-2
RevisionLibrary-3





You could replace Withit-MapRoom-2 with Creak-MapRoom-1:

[Timetable]
Playtime-4
Creak-MapRoom-1
RevisionLibrary-3





This means that the second lesson of the day will be the one with ID
Creak-MapRoom-1. But that lesson doesn’t exist yet, because we just made it
up. So now it’s time to create the lesson.




Creating the lesson

Now that the [Timetable] section contains a brand new lesson ID, we have to
make sure there is a corresponding [Lesson ...] section. For this we’re
going to take a short cut. Since a lesson with Mr Creak in the Map Room is
going to be almost the same as a lesson in the Map Room with any other teacher,
we’re going to find one such lesson, copy and paste it, and make the necessary
modifications.

A good candidate for this copy/paste/modify plan is the lesson
Withit-MapRoom-1, so find the section named
[Lesson Withit-MapRoom-1 WITHIT, MapRoom], copy and paste it somewhere else
amid the [Lesson ...] sections, and rename it thus:

[Lesson Creak-MapRoom-1 CREAK, MapRoom]
BOY01, ReadingRoom-Boy
BOY02, WhiteRoom-Boy
BOY03, ReadingRoom-Boy
BOY04, WhiteRoom-Boy
BOY05, ReadingRoom-Boy
BOY06, WhiteRoom-Boy
BOY07, ExamRoom-Boy
BOY08, ReadingRoom-Boy
BOY09, ExamRoom-Boy
BOY10, ExamRoom-Boy
BOY11, MapRoom-Boy
WACKER, ExamRoom-Teacher
ROCKITT, WhiteRoom-Teacher
WITHIT, MapRoom-Teacher
CREAK, ReadingRoom-Teacher
TEARAWAY, ExamRoom-Tearaway
BULLY, MapRoom-Bully
SWOT, MapRoom-Swot





Now we’re almost done. All that remains is to assign the appropriate command
list to Mr Creak, and an alternative appropriate command list to Mr Withit. The
simplest thing to do is switch their command lists round, thus:

WITHIT, ReadingRoom-Teacher
CREAK, MapRoom-Teacher





And that’s it. Now run skool_daze.py, and give Mr Creak a round of applause
as he makes it to the Map Room for the first time in his long career.






All aboard the Science Lab

Let’s try our hand at a completely new lesson in Back to Skool this time. What
about one where every boy and girl piles into the Science Lab with Mr Rockitt?
That should be interesting.


Adding an entry to the timetable

You’re an old hand at this now. Open up back_to_skool/lessons.ini and inspect
the [Timetable] section:

[Timetable]
Playtime-5
Creak-YellowRoom-2
Assembly





Let’s replace that Creak-YellowRoom-2 entry with a carefully chosen unique
ID for our new lesson:

[Timetable]
Playtime-5
Rockitt-ScienceLab-AllAboard
Assembly





Time to create the lesson itself.




Creating the lesson

We’ll use the copy/paste/modify trick again, but this time there will be a lot
more modifying to do. The lesson Rockitt-ScienceLab-1 would be a good
template to use, so find the lesson section named
[Lesson Rockitt-ScienceLab-1 ROCKITT, ScienceLab], copy and paste it
somewhere else amid the lesson sections, and rename it thus:

[Lesson Rockitt-ScienceLab-AllAboard ROCKITT, ScienceLab]





The next step is to assign appropriate command lists to the characters. The
appropriate command list for the little boys and girls is ScienceLab-Boy -
don’t be fooled by the -Boy suffix. So modify those command lists thus:

GIRL01, ScienceLab-Boy
GIRL02, ScienceLab-Boy
...
BOY01, ScienceLab-Boy
BOY02, ScienceLab-Boy
...
BOY10, ScienceLab-Boy





Now for the teachers. Mr Rockitt will obviously have to be in the Science Lab
and the other teachers might as well just wander around, since they’ll have
nothing better to do:

WITHIT, Walkabout1-Teacher
ROCKITT, ScienceLab-Teacher
CREAK, Walkabout2-Teacher
TAKE, GirlsSkoolWalkabout-Teacher





Mr Wacker and Albert are fine as they are. Next, the main kids. They all need
to pile into the Science Lab:

TEARAWAY, ScienceLab-Tearaway
BULLY, ScienceLab-Bully
SWOT, ScienceLab-Swot
HEROINE, ScienceLab-Boy





Now we’re ready. Run back_to_skool.py, and watch the Science Lab fill to
bursting point. Fun.






Where’s the chalk?

So you’ve modified messages and lessons, but to be brutally honest, you haven’t
proved yourself as a Pyskool modder until you’ve created your own command list.
Recall that a command list is a list of commands (!) that control a character
during a lesson.

In this exercise we’ll take the command list that controls the tearaway when
he’s on a blackboard-defacing spree in Skool Daze:

[CommandList WriteOnBoards-Tearaway]
GoTo, ExamRoomBlackboard:Middle
WriteOnBoardUnless, Dirty
GoTo, WhiteRoomBlackboard:Middle
WriteOnBoardUnless, Dirty
GoTo, ReadingRoomBlackboard:Middle
WriteOnBoardUnless, Dirty
SetControllingCommand, FireNowAndThen
GoToRandomLocation
WalkAround, 10
Restart





and turn it into a command list that leaves the tearaway frustrated by the
global chalk shortage. One simple way to do this is to replace the three
WriteOnBoardUnless commands with these commands:

Say, "Hey, where's the chalk?"
Say, "OMG, no chalk here, either!"
Say, "WTF? Has Mr Creak been eating the chalk or something?"





And for good measure we’ll insert another Say command after
GoToRandomLocation:

Say, "Anybody got any chalk?"





When these modifications are complete, the command list should look like this:

[CommandList WriteOnBoards-Tearaway]
GoTo, ExamRoomBlackboard:Middle
Say, "Hey, where's the chalk?"
GoTo, WhiteRoomBlackboard:Middle
Say, "OMG, no chalk here, either!"
GoTo, ReadingRoomBlackboard:Middle
Say, "WTF? Has Mr Creak been eating the chalk or something?"
SetControllingCommand, FireNowAndThen
GoToRandomLocation
Say, "Anybody got any chalk?"
WalkAround, 10
Restart





Now run skool_daze.py and watch as the hapless tearaway’s blackboard-daubing
career is dashed to the ground.




Ready-made customisations

Some ready-made customised ini files are distributed with Pyskool to
demonstrate what’s possible with the Pyskool engine. These customisations are
described in the following sections.


Skool Daze Take Too

To play ‘Skool Daze Take Too’, double-click skool_daze_take_too.py or run it
from the command line thus:

$ ./skool_daze_take_too.py

and say hello to Skool Daze’s new philosophy teacher, who may look somewhat
familiar.




Ezad Looks

To play ‘Ezad Looks’, double-click ezad_looks.py or run it from the command
line thus:

$ ./ezad_looks.py

and prepare to feel a little disoriented for a while.




Back to Skool Daze

To play ‘Back to Skool Daze’, double-click back_to_skool_daze.py or run it
from the command line thus:

$ ./back_to_skool_daze.py

and hit some shields for old times’ sake.









          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
General info


Contact details

To make complaints about or suggest improvements to Pyskool, or to submit some
other piece of constructive criticism, contact me (Richard Dymond) at
<rjdymond AT gmail.com>.




Bugs

No doubt there are bugs in Pyskool - and in this documentation - or ways it
deviates unacceptably from the original games. Please report any bugs [https://github.com/skoolkid/pyskool/issues]
(reproducible crashes, especially) you find, and help to make Pyskool a solid
and stable platform for developing new Skool-based games. If you can provide a
saved game that demonstrates the bug shortly after being loaded, all the
better.




Frequently asked questions

How does Pyskool differ from the original games?

Though the conversion of the original games to Python/Pygame is pretty faithful
(I think), there are some differences, noted below.

General differences:


	More than one character can be talking at any given time

	Characters can talk while off-screen (so it’s possible for the scrolling
screen to reveal a character mid-sentence)

	Eric cannot walk slowly



In Skool Daze mode:


	Boys can find the back seat in the Reading Room

	Eric will not be expelled until he has more than 10000 lines (in the
original game, he could be expelled when he had exactly 10000 lines)

	Eric will get lines if a teacher spots him writing on a blackboard

	The broken jumping sound effect [http://skoolkit.ca/disassemblies/skool_daze/reference/bugs.html#jumpSound] has been fixed



In Back to Skool mode:


	Eric can release mice anywhere (not just in the girls’ skool)

	Eric can re-catch mice that he has released; well, why not?

	The frog is visible from the start of the game; I think the only reason it
was hidden in the original game was a lack of RAM (the frog shares its
character buffer with the mouse, and the mouse needs to be visible from the
start)

	The ‘conker’ sound effect is played when Albert (instead of when Einstein or
Angelface) is struck by a conker



Why Python (and Pygame)?

Because Python is an elegant, expressive, and excellent programming language.
Plus it enables rapid development, which is good because I develop Pyskool in
my limited spare time. Pygame’s pretty good too. When I started Pyskool back in
2008, I don’t know how else I’d have done graphics with Python.

Why Skool Daze and Back to Skool?

If you need to ask, you probably shouldn’t be here. Actually, what are you
doing here? Go and play Jet Set Willy, or something.







          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
Changelog


1.2 (2015-01-14)


	Dropped support for Python 2.6 and Pygame 1.7

	Added support for Python 3.4

	The Insert (screenshot), F2 (save), F6 (load), F11 (toggle full-screen mode)
and F12 (menu) keys now work when Eric is writing on a blackboard

	Fixed the quit menu so that it works when Eric is writing on a blackboard






1.1.2 (2014-06-14)


	Customised the theme tunes, ‘all shields’ tunes, ‘open safe’ tunes and ‘up a
year’ tunes in Skool Daze Take Too, Ezad Looks and Back to Skool Daze

	Customised the lesson questions and answers in Skool Daze Take Too, Ezad
Looks and Back to Skool Daze

	Customised the ‘sit down’ messages and ‘lesson’ messages in Back to Skool
Daze

	Added the --config command line option (to set the value of a
configuration parameter)






1.1.1 (2014-01-26)


	Added the ConfirmClose and ConfirmQuit parameters to the
[GameConfig] section (to control whether a confirmation screen is shown
when Escape or the window close button is pressed)

	Added the Volume parameter to the [GameConfig] section (to set the
volume for sound effects)

	Added support for appending content to existing ini file sections by adding a
‘+’ suffix to the section name (e.g. [SkoolLocations+])

	Added a menu item to switch between full-screen and windowed mode

	Added the --force command line option (to overwrite existing images, ini
files and sound files)

	Added the --sample-rate command line option (to set the sample rate of
the sound files created by --create-sounds)

	Fixed the bug that freezes the game if Eric’s lines total goes over 10000
while he’s being fetched by the teacher on dinner duty






1.1 (2013-12-01)


	Replaced all the sound files with high-quality (44.1kHz) versions

	Added hitting sound effects (HIT0, HIT1) to Skool Daze

	Added the ALARM sound effect ID (for when Albert is telling Mr Wacker
that Eric’s escaping)

	Screenshots are now saved to the screenshots directory by default

	Added the --create-sounds command line option (to create the sound files
required by a game)

	Added the --package-dir command line option (for showing the path to the
pyskool package directory)

	Added the --search-dirs command line option (for showing the locations
that Pyskool searches for data files)

	Added the --setup command line option (to create the images, ini files
and sound files required by a game)

	Added a second source for the Skool Daze TZX file to images.ini

	Removed the documentation sources from the Pyskool distribution (they can be
obtained from GitHub [https://github.com/skoolkid/pyskool])






1.0.1 (2012-12-07)


	Moved the man pages to section 6






1.0 (2012-12-03)


	Added the --get-images command line option (to download TZX files of
Skool Daze and Back to Skool from sources listed in images.ini and extract
images from them)

	Added the --create-ini command line option (to create the stock game ini
files)

	Added the ability to switch between full-screen and windowed mode by pressing
F11

	Man pages for the game launcher scripts are included in the man directory

	Fixed the audio latency that can occur when using Pygame 1.8+

	Fixed the bug that enables Eric to ride the bike past Albert when he has his
arm raised

	Fixed the bug that makes Eric remain aloft after the knocked out kid he’s
standing on (near a staircase) has risen

	Fixed the bug in Back to Skool Daze that makes the shield on the shelf in the
boys’ skool turn into a cup when Eric goes onto the next year

	Fixed the ezad_looks/mutables.png image (each pair of shield/safe images
was in the wrong order)






0.6 (2011-06-05)


	Pyskool can be installed as a Python package using setup.py install

	Changed the menu show/hide key from F10 (which activates the menu bar in
Windows) to F12

	Added default key bindings to pyskool.ini

	Fixed the bug that enables Eric to kiss Hayley while she’s sitting down

	Fixed the bug that makes Mr Wacker give Eric lines for being on the floor or
not in skool while expelling him for jumping out of the top-floor window

	Fixed the bug that causes sprite graphics to lose their transparency when a
game saved at one colour depth is loaded at a higher colour depth






0.5.4 (2011-03-15)

Fixed the bug that causes a crash when Eric tries to get on the bike.




0.5.3 (2010-12-16)

Fixed the bug that prevented a saved game from loading when using
GraphicsMode 0 (hi-res colour).




0.5.2 (2010-11-03)


	Added a jumping sound effect to Skool Daze

	Fixed a graphic glitch in the girls’ shoes






0.5.1 (2010-06-21)

Fixed the bug that causes a crash during a non-question-and-answer lesson when
the teacher has returned to the blackboard after fetching the truant Eric.




0.5 (2010-06-08)


	Added an in-game menu

	Screen can be rescaled while Pyskool is running

	Key bindings are defined in pyskool.ini






0.4 (2010-05-28)


	Added the ability to save and load games

	The score box is drawn using labels defined in the [MessageConfig]
section

	Added lesson box background images

	Added message box images (now the message boxes in Skool Daze mode look like
those used in the original game)






0.3 (2010-05-18)


	Moved data that was embedded in the Python code into the ini files: there are
now over 100 more parameters to tweak in the [GameConfig],
[ScreenConfig], [LessonConfig], [TimetableConfig],
[TimingConfig] and [AnimationPhases ...] sections, and extra
character-controlling arguments to play with in the WalkAround,
MoveAboutUntil, MoveMouse, MoveFrog, and
WatchForEric commands (for example)

	Added utility scripts createini.py (generates ini files) and
extract-png.py (extracts graphics from memory snapshots of the original
skool games)

	Added documentation sources in docs-src






0.2.4 (2010-04-30)

Added the following features:


	‘Back to Skool Daze’ example customisation

	Keyboard is checked during long sound effects (so you can pause or quit while
the tune is playing, for example)

	Screenshots can be taken while the game is paused

	[Screen] section in the ini files

	API documentation






0.2.3 (2010-04-13)

Added the ‘Ezad Looks’ example customisation.




0.2.2 (2010-04-02)

Added the following features in Back to Skool mode:


	Eric is paralysed and expelled after jumping out of the top-floor window

	Albert alerts Mr Wacker if he spots Eric trying to escape

	Mr Wacker shadows Eric after being alerted by Albert

	Mr Creak and Mr Rockitt behave correctly during assembly

	Mr Withit does assembly duty

	Eric gets lines for not sitting down facing the stage during assembly

	Eric gets lines for standing on plants

	Miss Take chases Eric out of the girls’ skool if she spots him there when
it’s not playtime



Also fixed the following bugs:


	Game crashes if Eric tries to sit back on the saddle of the bike after
standing on it

	Eric gets lines for riding the bike in the playground

	Eric gets lines if spotted falling from a window

	Screen scrolls right every time Eric kisses Hayley






0.2.1 (2010-03-26)

Added the following features in Back to Skool mode:


	Eric can release mice

	The girls and Miss Take will jump up and down or stand on a chair if they
spot a mouse nearby

	Eric can kiss (or try to kiss) Hayley

	Eric can open desks and collect the water pistol or stinkbombs

	Eric can drop stinkbombs

	Mr Wacker will open a nearby window if he smells a stinkbomb

	Eric can fire the water pistol

	Eric can fill the water pistol with sherry

	Eric can throw away the water pistol

	Cups can be filled with water or sherry

	Plants grow when watered

	Eric can stand on plant pots

	Eric is lifted by a growing plant

	Eric can step off a fully grown plant through an open window

	Eric can step off a fully grown plant over the skool gate

	Drops of water or sherry can be knocked out of a cup with a catapult pellet

	Teachers reveal bike combination digits when hit by a drop of water

	Eric can unchain the bike by writing the combination on a blackboard

	Eric can ride the bike

	Eric can stand on the saddle of the bike

	Eric can jump off the saddle of the bike

	Eric is launched over the closed skool gate if he hits it while standing on
the saddle of the bike

	Teachers reveal storeroom combination letters when hit by a drop of sherry

	Eric can get the storeroom key (and hence the frog) by writing the
combination on a blackboard

	Conker falls from the tree when hit by a catapult pellet

	Falling conker can knock people out

	Eric can place the frog in a cup

	Eric can get the safe key by knocking the frog from a cup onto Miss Take’s
head

	Eric can open the safe by jumping up to it when he has the key



Also fixed the following bugs:


	Game crashes if a character is chasing or looking for Eric while Eric is on a
staircase or jumping

	Eric does not get lines if caught writing on a blackboard

	Eric gets lines for being in the assembly hall during non-assembly periods






0.2 (2010-03-16)


	Added mice and frogs and the ability to catch them

	Fixed glitches in the animatory state graphics (sprites.png)

	Added the SHERRY sound sample

	Added the GameFps and ScrollFps configuration parameters



Also fixed the following bugs:


	Game crashes if you press ‘Delete’ while writing on a blackboard

	If a little boy talks to ERIC while he’s writing on a blackboard, pressing
‘U’ has no effect

	During dinner, the teacher on duty keeps giving Eric lines for not finding a
seat






0.1.2 (2009-07-22)

Fixed bug in Skool Daze mode where shields stay flashing after Eric’s been
expelled.




0.1.1 (2009-04-29)

Fixed bug where Eric gets trapped in his seat if he’s knocked out of it by a
catapult pellet and then tries to stand up.




0.1 (2008-11-12)


	Eric is expelled after exceeding the lines limit

	The swot tells tales

	Teachers track down Eric if he tries to skip class



In Skool Daze mode:


	Special playtimes have been implemented

	Teachers give lines for all possible infractions

	All commands required in Skool Daze mode have been implemented






0.0.4 (2008-10-24)


	Eric can write on blackboards

	Improved keyboard responsiveness

	Added ready-made example customisation: Skool Daze Take Too



In Skool Daze mode:


	Teachers reveal safe combination letters when all shields are flashing

	Eric can open the safe after writing the combination code on a blackboard

	Eric can unflash all the shields after opening the safe






0.0.3 (2008-10-08)


	Sound effects and tunes

	Teachers give lines for some infractions

	Eric can jump (into the air and onto other kids, too)

	Eric can make shields flash






0.0.2 (2008-09-23)


	Added --scale and --ini command line options

	Bully can knock people out

	Tearaway can fire catapult pellets

	Eric can do these things too

	Tearaway writes on the blackboards

	Implemented several previously unimplemented commands






0.0.1 (2008-09-09)

Initial public release.







          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
Graphics

The stock Pyskool graphics are stored in PNG files in subdirectories under
images/originalx1. The PNG files are:


	bubble.png - speech bubble and lip

	font.png - the skool font

	inventory.png - mouse, frog, water pistol etc.

	lesson_box.png - the lesson box background

	logo.png - the, er, logo

	message_box.png - the message box background

	mutables_ink.png - doors, windows, shields, safe etc. (ink colours only)

	mutables_paper.png - doors, windows, shields, safe etc. (paper colours
only)

	mutables.png - doors, windows, shields, safe etc. (full colour)

	scorebox.png - the score/lines/hi-score box background

	skool_ink.png - the skool (ink colours only)

	skool_paper.png - the skool (paper colours only)

	skool.png - the skool (full colour)

	sprites.png - the characters in various ‘animatory states’



These images were extracted straight from memory snapshots of Skool Daze and
Back to Skool, and are therefore identical to the graphics in the original
games (hence the original prefix in the directory name), except for minor
glitches that have been fixed. (See Skool Daze graphic glitches [http://skoolkit.ca/disassemblies/skool_daze/graphics/glitches.html] and
Back to Skool graphic glitches [http://skoolkit.ca/disassemblies/back_to_skool/graphics/glitches.html].)

The *_ink.png and *_paper.png files are used in GraphicsMode 1 (see
[ScreenConfig]) in order to emulate the Spectrum display, which was
restricted to two colours (‘ink’ and ‘paper’) per 8x8-pixel block.

sprites.png is an 8x16 array of sprites for the characters in the game. These
sprites are all facing left, and are flipped to obtain the corresponding
right-facing sprites.

Any of these images can be customised using your favourite image editor.

Pyskool performs the following steps to determine the base directory for
graphics to use in the game:


	Collect the values of ImageSet and Scale from the [GameConfig]
and [ScreenConfig] sections of the config file

	Look for the directory images/<ImageSet>x<Scale>

	Use images from that directory if it exists, or...

	...use images from images/<ImageSet>x1 and scale them up



The actual image files used from the base directory are defined in the
[Images] section.

If you wanted to create your own hi-res graphics at 2x the original Spectrum
size, you could place them under a base directory called images/Customx2
and use the following parameter value in the [GameConfig] section:

ImageSet, Custom





and the following parameter values in the [ScreenConfig] section:

Scale, 2
GraphicsMode, 0









          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
Main ini file

The main ini file - pyskool.ini - defines key bindings and the appearance and
content of the game menus. Each section is described below.


[Keys]

The Keys section defines the key bindings. Each line in the section has the
form:

actionId, key1, key2, ...





where actionId is the identifier of the action to bind to the keys
key1, key2 and so on. Any number of keys may be bound to an action.

Pyskool recognises the following action identifiers for moving Eric:


	LEFT - move left

	RIGHT - move right

	UP - move up

	DOWN - move down

	SIT_STAND - sit down or stand up

	OPEN_DESK - open a desk

	FIRE_CATAPULT - fire the catapult

	FIRE_WATER_PISTOL - fire the water pistol

	DROP_STINKBOMB - drop a stinkbomb

	HIT - throw a punch

	JUMP - jump

	WRITE - start writing on a blackboard

	ENTER - finish writing on a blackboard

	CATCH - try to catch a mouse or frog

	UNDERSTOOD - acknowledge understanding of a message

	MOUNT_BIKE - mount the bike

	DUMP_WATER_PISTOL - throw away the water pistol

	RELEASE_MICE - release some mice

	KISS - try to kiss someone



In addition, Pyskool recognises the following identifiers for actions not
related to moving Eric:


	QUIT - quit Pyskool

	FULL_SCREEN - toggle full-screen mode

	PAUSE - pause the game

	SCREENSHOT - take a screenshot

	SAVE - save the game

	LOAD - load the most recently saved game

	MENU - show the menu

	MENU_EXIT - hide the menu and resume the game

	MENU_PREV - move to the previous item in the menu

	MENU_NEXT - move to the next item in the menu

	MENU_EXEC - execute the selected menu item



Pygame uses keyboard constants to identify keys; a full list of those constants
can be found in the
pygame documentation [http://pygame.org/docs/ref/key.html]. The key names
(key1, key2 etc.) declared in a line of the Keys section should
match the names of the Pygame keyboard constants, but with the K_ prefix
removed.




[Menu ...]

Each Menu ... section defines a menu and its appearance. The section name
has the form:

Menu menuId





where menuId is a unique identifier for the menu. The section may contain
the following configuration parameters:


	Alpha - the transparency of the menu (0=fully transparent, 255=fully
opaque)

	Highlight - the background colour of the selected menu item

	Ink - the ink colour to use for the title, menu items and status bar

	Paper - the main background colour

	StatusBar - whether to show a status bar (0=no, 1=yes)

	StatusPaper - the background colour of the status bar

	Title - the menu title

	TitlePaper - the background colour of the title bar

	Width - the width of the menu (as a fraction of the screen width)



pyskool.ini contains the definitions for two menus, whose unique IDs must be
Main and Quit.




[MenuItems ...]

Each MenuItems ... section defines the menu items for a menu. The section
name has the form:

MenuItems menuId





where menuId is the unique identifier of the menu (defined by a [Menu ...]
section).

Each line in the section has the form:

operation, text





where:


	operation is the unique ID of the operation to which the menu item is
bound

	text is the text of the menu item



The operation IDs recognised by Pyskool are:


	LOAD - load the most recently saved game

	QUIT - quit Pyskool

	RESUME - hide the menu and resume the game

	SAVE - save the game

	SCALE_DOWN - decrease the scale factor by 1

	SCALE_UP - increase the scale factor by 1

	TOGGLE_FULLSCREEN - toggle fullscreen mode









          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
Game ini files

The game ini files determine many aspects of the game, such as the names of the
characters, the order of the lessons, and what characters do during lessons.

By default, the ini files for a particular game are arranged in one of the
subdirectories of the ini directory thus:


	command_lists.ini - command lists

	config.ini - configuration parameters

	font.ini - font character bitmap descriptions (see [Font])

	lessons.ini - the main timetable and
lessons

	messages.ini - messages

	skool.ini - walls, floors and other parts of
the skool

	sprites.ini - sprite and character definitions



However, this arrangement is quite arbitrary; Pyskool will read every file with
a .ini suffix in the subdirectory regardless of its name or contents. So you
could, if you wish, concatenate all the ini files into one large ini file, and
Pyskool will still work.

Pyskool reads ini files in alphabetical order of filename, and if a particular
section appears in more than one file, the contents of that section in the last
file read take precedence. So the best way to modify a game is to add
customised sections to a file named zzz-custom.ini (for example), which will
be read after all the stock ini files.

If you want to customise a section by adding lines to it rather than completely
replacing the existing contents, you can append a ‘+’ to the section name. For
example, if zzz-custom.ini contains a section named [SkoolLocations+], then
the contents of that section will be appended to the contents of the
[SkoolLocations] section defined in config.ini. By this method, you can
customise the [SkoolLocations] section in a supplementary ini file without
copying its original contents first.

What follows is a description of every section of the ini files. Armed with
this knowledge, and by consulting the command reference
where necessary, you’ll be able to start mucking around with how Pyskool works
and how the game characters behave.

If you can’t be bothered to read any of this and instead just want to get your
modding hands dirty right now, head over to Example customisations.

If you’re even lazier than that, head over to the
ready-made customisations that are distributed with
Pyskool.


[AnimationPhases ...]

The AnimationPhases ... section names take the form:

AnimationPhases phaseSetId





where phaseSetId is a descriptive unique ID for the list of animation
phases that follows.

The format of an animation phase depends on who uses the phase set.

Each phase in the phase sets used by the frog (FrogTurnRound,
FrogShortHop and FrogLongHop) looks like this:

animatoryState, xInc, directionChange





where:


	animatoryState is the ID of the animatory state

	xInc is the x-coordinate increment

	directionChange is the direction multiplier (-1 to change direction, 1 to
not)



Each phase in the phase sets used by Eric (DescentMiddleWindow,
DescentUpperWindow, ClimbSkoolGate and FlyOverSkoolGate) looks like
this:

xInc, yInc, animatoryState





where:


	xInc is the x-coordinate increment

	yInc is the y-coordinate increment

	animatoryState is the ID of Eric’s animatory state



Each phase in the phase set used by the stream of water or sherry fired from a
water pistol (Water) looks like this:

animatoryState, xInc, yInc, hit





where:


	animatoryState is the ID of the animatory state

	xInc is the x-coordinate increment

	yInc is the y-coordinate increment

	hit is 0 if the water cannot hit anything, 1 if it can hit a cup, or 2 if
it can hit a plant or the ground in this phase



Each phase in the phase set used by a stinkbomb when dropped (Stinkbomb)
looks like this:

animatoryState, direction





where:


	animatoryState is the ID of the animatory state

	direction is the direction (-1 for left, 1 for right)






[AssemblyMessages]

The AssemblyMessages section contains all the information required to build
a message used by the headmaster during assembly.

There are two types of entry in this section. The first type of entry is the
message template entry:

MESSAGE, assemblyMessageTemplate





which defines the template for an assembly message. The section can contain one
or more message templates.

The second type of entry is the macro replacement entry:

MACRO, text





where MACRO is the name of a macro that appears in a message template
(prefixed by $), and text is the text to which the macro should expand.
Multiple macro replacement entries may be defined for any given macro. When an
assembly message is created, the message template is chosen at random, and the
macro replacements are chosen at random.

In the stock Pyskool ini files, there is only one assembly message template,
which contains two macros ($VERB and $NOUN).




[Bike]

The Bike section contains a single line of the form:

bikeId, spriteGroupId, animatoryState, unchainXY, commandListId, topLeft, size, coords, moveDelay, pedalMomentum, maxMomentum





where:


	bikeId is the bike’s ID

	spriteGroupId is the ID of the sprite group to use
for the bike

	animatoryState is the bike’s initial animatory state

	unchainXY is the bike’s initial coordinates (in (x, y) form) after
being unchained

	commandListId is the unique ID of the command list
that the bike will use

	topLeft is the coordinates (in (x, y) form) of the top left of the
image of the base of the tree with no bike attached

	size is the size of the image (in (width, height) form)

	coords are the coordinates (in (x, y) form) of the mutable image in the
play area

	moveDelay is the delay between consecutive movements of the bike when
wheeling along or being pedalled (the higher the number, the slower the bike
will go)

	pedalMomentum is the momentum increment when the bike is pedalled

	maxMomentum is the maximum momentum the bike can have



The bike images can be found in mutables.png (or mutables_ink.png and
mutables_paper.png if GraphicsMode is 1 - see [ScreenConfig]).
mutables.png is arranged so that the image of the bike attached to the base
of the tree is at (x + width, y), where (x, y) are the coordinates of the
image of the base of the tree with no bike attached. These two images are the
same size.




[BlackboardMessages ...]

The [BlackboardMessages ...] section names take the form:

BlackboardMessages characterId





where characterId is the unique ID of a character (see [Characters]).

Each BlackboardMessages section contains a list of messages (one per line)
that may be written on a blackboard by the character whose ID is
characterId.

There are two special characters used in blackboard messages: ^ and $.
^ represents the newline character (as defined by the Newline
configuration parameter in the [MessageConfig] section). $ is used to
prefix the unique ID of a character, as in:

TEARAWAY, i hate^$WACKER





where $WACKER will be replaced by whatever name has been given to the
character whose unique ID is WACKER.

If no blackboard messages are defined for a particular character, that
character will never write on a blackboard.




[Blackboards]

The Blackboards section defines the blackboards in the classrooms. Each
line has the form:

roomId, topLeft, size, chalk





where:


	roomId is the classroom’s unique ID (see [Rooms])

	topLeft is the coordinates of the top-left of the blackboard

	size is the size (width, height) of the blackboard

	chalk is the chalk colour (as an RGB triplet) to use when writing on the
blackboard



In the stock Pyskool ini files, chalk is set to (255, 255, 255) - bright
white - which coincides with the transparent colour used in the skool ink image
(see SkoolInkKey in the [ScreenConfig] section). This means that in
graphics mode 1 (see GraphicsMode in the [ScreenConfig] section),
anything written on the board will take on the background (paper) colour, which
is how blackboards worked in the original games.




[CatapultPellets]

Each line in the CatapultPellets section has the form:

characterId, pelletId, spriteGroupId, commandListId, range, hitZone, hitXY





where:


	characterId is the unique ID of the catapult-wielding character

	pelletId is the unique ID of the catapult pellet

	spriteGroupId is the ID of the sprite group to use
for the pellet

	commandListId is the unique ID of the command list
that the pellet will use

	range is the distance the pellet will fly after being launched

	hitZone is the size of the interval at the end of the pellet’s flight
where it can knock a character over

	hitXY is the coordinates of the pellet within its sprite (used for
collision detection)



Each character whose unique ID appears in this section will be fitted out with
a catapult. In the stock Pyskool this will be Eric and the tearaway - the only
characters with catapult-firing sprites.




[Chairs]

The Chairs section contains one line for each classroom in the skool. Each
line has the form:

roomId, x1, x2, x3..., xN





where:


	roomId is the classroom’s unique ID (see [Rooms])

	x1, x2, x3 and so on are the x-coordinates of the chairs in the
classroom



The order in which the x-coordinates are listed is significant: x1 should
correspond to the ‘front seat’ and xN should correspond to the ‘back seat’.
So if x1 < xN, characters will sit down facing left; if
x1 > xN, characters will sit down facing right.




[Characters]

Each line in the Characters section has the form:

characterId, name[/title], spriteGroupId, animatoryState, direction, (x, y), headXY, flags





and corresponds to a single character, where:


	characterId is the character’s unique ID (which should be alphanumeric
and is used to refer to the character in other parts of the ini file)

	name is the character’s name (as displayed in the game), and title
(if supplied) is the name used by the swot to address the character

	spriteGroupId is the ID of the sprite group to use
for the character

	animatoryState is the character’s initial animatory state

	direction is the character’s initial direction (-1 for left, 1 for right)

	(x, y) are the character’s initial coordinates

	headXY are the coordinates of the character’s head within his sprite when
he’s standing upright (used for collision detection)

	flags is a string of flags defining the character’s abilities and
vulnerabilities



Recognised flags and their meanings are:


	A - is an adult

	B - belongs in the boys’ skool

	C - can be knocked over by a conker (see also Z)

	D - can open doors and windows

	F - can be knocked out by a fist

	G - belongs in the girls’ skool

	K - holds the key to the safe

	L - can give lines

	M - is scared of mice

	N - can smell stinkbombs (and will open a nearby window if possible)

	P - can be knocked over by a catapult pellet

	R - can receive lines

	S - holds a safe combination letter

	T - can be tripped up by a stampeding kid (see TripPeopleUp)

	U - lines received by this character will be added to Eric’s total

	V - lines received by this character will be added to Eric’s score

	W - usually walks (unlike kids who sometimes run)

	X - holds a bike combination digit

	Y - holds a storeroom door combination letter

	Z - will be temporarily paralysed if struck by a falling conker (see also
C)






[CommandList ...]

The [CommandList ...] section names take the form:

CommandList commandListId





where commandListId is a descriptive unique ID for the list of commands
that follows. These unique IDs are used in the [Lesson ...] sections: for
each type of lesson there is, every character is assigned a single command list
to follow.

One example of a command list is:

[CommandList Walkabout1-Wacker]
GoTo, HeadsStudy:Window
GoToRandomLocation
Restart





This command list is used occasionally by the headmaster; it makes him
repeatedly go to one of his random locations and then
back to his study.

Each line in a command list contains the command name followed by a
comma-separated list of arguments. See the
command reference for more details on the commands that may
be used to control a character.




[Conker]

The Conker section defines a conker (as knocked out of the tree by a
catapult pellet). It contains a single line of the form:

objectId, spriteGroupId, commandListId, minX, maxX, minY, maxY, hitXY





where:


	objectId is a unique ID for the conker

	spriteGroupId is the ID of the sprite group to use
for the conker

	commandListId is the unique ID of the command list
that the conker will use when knocked out of the tree

	minX, maxX, minY and maxY define the rectangle inside the
tree that contains the conker; a pellet that hits a spot in that rectangle
will cause a conker to fall

	hitXY is the coordinates of the conker within its sprite (used for
collision detection)






[Cups]

The Cups section contains information about cups. Each line describes a
single cup, and has the form:

cupId, emptyTopLeft, size, coords





where:


	cupId is the unique ID of the cup

	emptyTopLeft is the coordinates (in (x, y) form) of the top left of the
image of the cup when empty

	size is the size of the image (in (width, height) form)

	coords are the coordinates (in (x, y) form) of the cup in the skool



The cup images can be found in mutables.png (or mutables_ink.png and
mutables_paper.png if GraphicsMode is 1 - see [ScreenConfig]).
mutables.png is arranged so that the image of a cup when it contains water is
at (x + width, y), and the image of a cup when it contains sherry is at
(x + 2 * width, y) (where (x, y) are the coordinates of the image of the
cup when empty). The three images for any given cup are the same size.




[DeskLid]

The DeskLid section contains a single line of the form:

deskLidId, spriteGroupId, commandListId, xOffset





where:


	deskLidId is the unique ID of the desk lid

	spriteGroupId is the ID of the sprite group to use
for the desk lid when raised

	commandListId is the unique ID of the command list
that the desk lid will use

	xOffset - the offset (relative to the desk being opened) at which the
desk lid should be displayed






[Desks]

Each line in the Desks section has the form:

roomId, x1, x2...





where


	roomId is a classroom’s unique ID (see [Rooms])

	x1, x2 and so on are the x-coordinates of the desks in the classroom
(which should be a subset of the x-coordinates of the chairs in the classroom
- see [Chairs])



Any chair that is in a room and at an x-coordinate that appears in the
Desks section will be fitted out with a desk lid that can be raised (see
[DeskLid]).




[Doors]

The Doors section contains details of the doors in the game. Each line
has the form:

doorId, x, bottomY, topY, initiallyShut, autoShutDelay, shutTopLeft, size, coords[, climb[, fly]]





where:


	doorId is the door’s unique ID

	x is the door’s x-coordinate

	bottomY and topY are the y-coordinates of the bottom and top of the
door

	initiallyShut is Y if the door should be shut when the game starts

	autoShutDelay is the delay before the door swings shut automatically; if
zero or negative, the door will not shut automatically

	shutTopLeft is the coordinates (in (x, y) form) of the top left of the
image of the door when shut

	size is the size of the image (in (width, height) form)

	coords are the coordinates (in (x, y) form) of the door in the skool

	climb is the ID of the sequence of
animation phases to use for Eric if he climbs over
the door when it’s shut; if not defined, Eric will not be able to climb over
the door

	fly is the ID of the sequence of
animation phases to use for Eric if he flies over
the door after hitting it while standing on the saddle of the bike; if not
defined, Eric will not be able to fly over the door



The door images can be found in mutables.png (or mutables_ink.png and
mutables_paper.png if GraphicsMode is 1 - see [ScreenConfig]).
mutables.png is arranged so that the image of a door when open is at
(x + width, y), where (x, y) are the coordinates of the image of the same
door/window when shut. The open/shut images for any given door are the same
size.




[Eric]

The Eric section describes our hero, Eric. It contains a single line in the
format:

characterId, name, spriteGroupId, animatoryState, direction, (x, y), headXY, flags[, bendOverHandXY]





where:


	characterId is Eric’s unique ID (which should be alphanumeric)

	name is Eric’s name

	spriteGroupId is the ID of the sprite group to use
for Eric

	animatoryState is Eric’s initial animatory state

	direction is Eric’s initial direction (-1 for left, 1 for right)

	(x, y) are Eric’s initial coordinates

	headXY are the coordinates of Eric’s head within his sprite when he’s
standing upright (used for collision detection)

	flags is a string of flags defining Eric’s abilities and vulnerabilities

	bendOverHandXY is the coordinates of Eric’s hand within his left-facing
BENDING_OVER sprite (used to determine where a mouse or frog should be when
caught or released)



For a description of the available flags, see [Characters].




[Font]

The Font section is used to determine the location and size of the font
character bitmaps in the font.png graphic. Each line has the form:

"char", offset, width





where:


	char is the font character (e.g. f, @, !)

	offset is the font character’s distance in pixels from the left of the
image

	width is its width in pixels






[Floors]

The Floors section contains details of the “floors” in the skool. A “floor”
(note the quotes) is a region of the skool that cannot be reached from another
region of the skool without navigating a staircase. For example, in Skool Daze,
the region to the left of the Map Room wall is one floor, and the region to the
right of the Map Room wall is another floor. You can’t get from one to other
without going up or down a staircase (walking through walls is prohibited).

Each line in this section has the form:

floorId, minX, maxX, y





where:


	floorId is the floor’s unique ID

	minX and maxX are the x-coordinates of the left and right limits of
the floor

	y is the y-coordinate of the floor (3 = top floor, 10 = middle floor,
17 = bottom floor)



The unique IDs are used in the [Routes] section.




[Frogs]

Each line in the Frogs section has the form:

frogId, spriteGroupId, animatoryState, (x, y), commandListId, turnRound, shortHop, longHop, sitXY, ericProximity





where:


	frogId is the unique ID of the frog

	spriteGroupId is the ID of the sprite group to use
for the frog

	animatoryState is the frog’s initial animatory state

	(x, y) are the frog’s initial coordinates

	commandListId is the unique ID of the command list
that the frog will use

	turnRound is the ID of the sequence of
animation phases to use when the frog turns round

	shortHop is the ID of the sequence of
animation phases to use when the frog makes a short
hop

	longHop is the ID of the sequence of
animation phases to use when the frog makes a long
hop

	sitXY is the coordinates of the frog within its sprite when it’s sitting
(used for collision detection and placement in cups)

	ericProximity is the minimum distance from the frog that Eric can be
before it will try to hop away



Any frog defined in this section will be catchable by ERIC, and show up in the
on-screen inventory when caught.




[GameConfig]

The GameConfig section contains configuration parameters in the format:

parameterName, parameterValue





Recognised parameters are:


	AllShieldsScore - points awarded for hitting all the shields

	AssemblyHallId - ID of the assembly hall (as defined in the [Rooms]
section); this is used to check whether Eric can sit or should be sitting on
the floor

	AssemblySitDirection - the direction Eric should face when sitting down
for assembly (-1 for left, 1 for right)

	BesideEricXRange - maximum horizontal distance from Eric at which a
character can be to be considered beside him

	BikeCombinationScore - points awarded for writing the bike combination on
a blackboard

	BikeSecrets - valid bike combination characters

	Cheat - 0 = disable cheat keys, 1 = enable cheat keys

	ConfirmClose - whether to show a confirmation screen when the window
close button is pressed (1 = yes, 0 = no)

	ConfirmQuit - whether to show a confirmation screen when Escape is
pressed to quit (1 = yes, 0 = no)

	ConkerClockTicks - the number of ticks by which the skool clock is
rewound (that is, the number of ticks by which the current period is
extended) when a character is paralysed by a falling conker

	ConkerWakeTime - the time (clock ticks remaining before the next bell
ring) at which a character paralysed by a conker will remobilise

	DrinksCabinetDoorId - the ID of the drinks cabinet door (see
[Doors]); this is used to detect whether Eric has jumped up to it (to
get the sherry)

	EvadeMouseDelay - the delay before a character frightened by a mouse will
either get off a chair or stop jumping

	ExpellerId - the ID of the character who is responsible for expelling
Eric

	FireCatapultProbability - the probability that the tearaway will fire his
catapult if conditions are suitable

	HitProbability - the probability that the bully will throw a punch if
conditions are suitable

	Icon - the name of the icon file to use

	ImageSet - the name of the image set to use

	GameFps - the number of frames per second at which the game should
attempt to run; raise it to increase the game speed, or lower it to decrease
the game speed

	KissCounter - the initial value of the kiss counter for a character

	KissCounterDeckrement - the amount by which a character’s kiss counter is
decreased after being knocked over

	KissCounterDecrement - the amount by which a character’s kiss counter is
decreased after kissing Eric

	KissDistance - the exact distance in front of Eric a character must be in
order to be kissable

	KissLines - the number of lines a kissee does for Eric on each kiss

	LinesGivingRange - the maximum horizontal and vertical distances a
character must be away from a target character to be considered close enough
to give or be given lines

	LinesRange - minimum and maximum number of lines (divided by 100) that
may be given out in one go

	LocationMarker - prefix used in a destination ID to denote the location
of a character

	MaxLines - the maximum number of lines Eric may accumulate before being
expelled

	MaxMiceRelease - the maximum number of mice to release per attempt

	MinimumLinesDelay - the minimum delay between two non-immediate
lines-givings by the same teacher

	MouseCatchScore - points awarded for catching a mouse

	MouseProximity - maximum distance at which a musophobe can detect a mouse
(and so be scared by it)

	Name - the name of the game

	Playground - the x-coordinates of the left and right boundaries of the
playground (used for checking whether Eric’s in the playground)

	PlayTuneOnRestart - 1 to play the theme tune after restarting the game
for advancing a year; 0 otherwise

	QuickStart - 0 to scroll the skool into view and play the theme tune (as
in the original games); 1 to skip this sequence

	RestartOnYearEnd - 1 if the game should restart after advancing a year
(as in Back to Skool); 0 otherwise (as in Skool Daze)

	SafeKeyScore - points awarded when the safe key is obtained

	SafeOpenScore - points awarded for opening the safe with the correct
combination

	SafeSecrets - valid safe combination characters

	SaveGameDir - the directory in which saved games will be stored

	SaveGameCompression - the compression level to use when saving a game
(0 = no compression, 9 = maximum compression)

	ScreenshotDir - the directory in which screenshots are dumped

	SherryId - the ID to use for sherry fired from a water pistol; by default
this is different from the value of WaterId so that sherry will not make
plants grow

	SpriteSize - the width and height of a sprite (in tiles)

	StoreroomCombinationScore - points awarded for writing the storeroom
combination on a blackboard

	StoreroomDoorId - the ID of the science lab storeroom door (see
[Doors]); this is used to detect whether Eric can open a door with the
storeroom key

	StoreroomSecrets - valid storeroom combination characters

	TooManyLinesCommandList - the ID of the command list Mr Wacker should use
to expel Eric after he’s exceeded the lines limit

	UpAYearScore - points awarded for advancing a year

	Volume - the sound effects volume (0.0 = silent, 1.0 = maximum)

	WaterId - the ID to use for water fired from a water pistol; liquid with
this ID will make plants grow (see SherryId)

	WindowProximity - maximum distance at which a window is considered nearby
(i.e. worth opening if a stinkbomb is smelt)






[GrassMessages]

The GrassMessages section contains five lines of the form:

Writers, characterId[, characterId...]
WriteTale, <text>
Hitters, characterId[, characterId...]
HitTale, <text>
AbsentTale, <text>





The information in this section is used by the swot to determine who can be
blamed for hitting him or writing on a blackboard, and what to say when telling
tales.

The Writers line contains a comma-separated list of IDs of characters who
can be blamed for writing on a blackboard. The WriteTale line contains the
text of the blackboard-writing tale.

The Hitters line contains a comma-separated list of IDs of characters who
can be blamed for hitting the swot. The HitTale line contains the text of
the so-and-so-hit-me tale.

The AbsentTale line contains the text that will be spoken by the swot when
he’s telling on Eric for being absent during class.

The text of a tale may contain any of the following macros:


	$TITLE - which will be replaced by the teacher’s title, as defined in the
[Characters] section; to change this macro, set the TitleMacro
configuration parameter in the [MessageConfig] section

	$1 - which will be replaced by the name of the hitter or writer chosen
from the Hitters or Writers list; to change this macro, set the
GrasseeMacro configuration parameter in the [MessageConfig] section

	$characterId (where characterId is the unique ID of any character) -
which will be replaced by the name of that character






[Images]

Each line in the Images section has the form:

imageId, path





where


	imageId is the unique ID of an image

	path is the location of the corresponding image file on disk (relative to
the images directory)



Recognised image IDs and the images they refer to are:


	FONT: the skool font

	INVENTORY: mouse, frog, water pistol etc.

	LESSON_BOX: the lesson box background

	LOGO: the logo

	MESSAGE_BOX: the message box used to display messages above a character’s
head (lines messages, escape alarm messages, and safe, bike, and storeroom
combination characters)

	MUTABLES: mutable objects (e.g. doors, windows, cups, shields, safe) -
full colour

	MUTABLES_INK: mutable objects (e.g. doors, windows, cups, shields, safe)
- ink colours only

	MUTABLES_PAPER: mutable objects (e.g. doors, windows, cups, shields,
safe) - paper colours only

	SCOREBOX: the score/lines/hi-score box background

	SKOOL: the skool - full colour

	SKOOL_INK: the skool - ink colours only

	SKOOL_PAPER: the skool - paper colours only

	SPEECH_BUBBLE: speech bubble and lip

	SPRITES: the characters in various ‘animatory states’






[Inventory]

Each line in the Inventory section has the form:

itemId, topLeft, size





where:


	itemId is the unique ID of an item that can be collected

	topLeft is the coordinates (in (x, y) form) of the top left of the
image of the item in inventory.png

	size is the size of the image (in (width, height) form)



The item IDs recognised by Pyskool are as follows:


	FROG - a frog

	MOUSE - a mouse

	SAFE_KEY - the key to the head’s safe

	SHERRY_PISTOL - a water pistol (containing sherry)

	STINKBOMBS3 - three stinkbombs

	STINKBOMBS2 - two stinkbombs

	STINKBOMBS1 - one stinkbomb

	STOREROOM_KEY - the key to the science lab storeroom

	WATER_PISTOL - a water pistol (containing water)



The order in which the items appear in the Inventory section determines the
order in which they will be printed in the on-screen inventory.

See also the [Mice] and [Frogs] sections (for details on those
animals), and the InventoryPos and MouseInventoryPos configuration
parameters in the [ScreenConfig] section.




[Lesson ...]

The [Lesson ...] section names take the form:

Lesson lessonId [*]characterId, roomId





if the lesson will take place with a teacher in a classroom or the dinner hall,
or:

Lesson lessonId locationId





if the lesson is an unsupervised period, where:


	lessonId is the lesson ID as it appears in the [Timetable] section

	characterId is the character ID of the teacher taking Eric’s class
(prefixed by ‘*’ if the teacher’s  name should not be printed in the lesson
box, as during DINNER)

	roomId is the ID of the room in which Eric’s class will take place

	locationId is one of PLAYTIME, REVISION LIBRARY, and ASSEMBLY



Each line in a [Lesson ...] section has the form:

characterId, commandListId





where


	characterId is the unique ID of a character (see [Characters])

	commandListId is the ID of the command list that
will control the character’s movements during the lesson



A command list is a sequence of commands - such as GoTo or
FindSeat - that make a character appear intelligent (kind of). See
[CommandList ...] for more details.

In any [Lesson ...] section there should be one line for each character
defined in the [Characters] section.




[LessonConfig]

The LessonConfig section contains configuration parameters in the format:

parameterName, parameterValue





Recognised parameters are:


	BlackboardBacktrack - the distance a teacher walks back after wiping a
blackboard

	BlackboardPaceDistance - the distance a teacher should pace up and down
in front of the blackboard during a lesson without a question-and-answer
session

	EricsTeacherWriteOnBoardProbability - the probability that a teacher will
write on the blackboard during a lesson with Eric and the swot

	GrassForHittingProbability - the probability that the swot will grass on
someone for hitting him

	LinesForTalesProbability - the probability that the teacher will give the
swot lines for telling tales

	QASessionProbability - the probability that the teacher will start a
question-and-answer session with the swot

	WriteOnBoardProbability - the probability that a teacher will write on
the blackboard during a lesson without Eric and the swot






[LessonMessages]

The LessonMessages section contains a list of messages that will be used by
teachers who are not teaching Eric, or teachers who are teaching Eric but have
chosen not to do a question-and-answer session. Each line in the section takes
the form:

characterId|*, lessonMessage[, condition]





where:


	characterId is the unique ID of a teacher

	lessonMessage is the message to add to that teacher’s repertoire

	condition is a condition identifier that must evaluate to true before the
message can be used



If * is used instead of a specific character ID, the message will be placed
in every teacher’s repertoire.

A lesson message may contain a character sequence $(N, M) (where N and
M are numbers); if so, it will be replaced by a random number between N and
M.

The only recognised condition identifier is:


	BoardDirty



(as defined by the BoardDirtyConditionId parameter in the
[MessageConfig] section) which, if specified, means the message will be
used only if the blackboard (if there is one) has been written on. Any other
condition identifier will evaluate to true.




[LinesMessages]

The LinesMessages section contains a list of admonitions delivered by
lines-givers when Eric has been spotted doing something he shouldn’t. Each line
in this section has the form:

characterId|*, linesMessageId, linesMessage





where


	characterId is the unique ID of the lines-giving character

	linesMessageId is the unique ID of the following message

	linesMessage is the admonition itself



If * is used instead of a character ID, the lines message will be used by
all lines-givers (unless they have been explicitly assigned a lines message
with the same lines message ID). For example:

WITHIT, NO_HITTING, BE GENTLE^NOW
*, NO_HITTING, DON'T HIT^YOUR MATES





would make Mr Withit scream “BE GENTLE NOW” whenever he sees Eric throwing a
punch, whereas every other teacher would scream “DON’T HIT YOUR MATES” instead.

A lines message always spans two lines on-screen. A caret (^) is used by
default to indicate where the words should be wrapped; to change this, set the
Newline configuration parameter in the [MessageConfig] section.

The recognised lines message IDs are:


	BACK_TO_SKOOL - Eric should be back in the boys’ skool by now

	BE_PUNCTUAL - Eric was late for class

	COME_ALONG_1 - the truant Eric is being guided to the classroom

	COME_ALONG_2 - the truant Eric is still being guided to the classroom

	COME_ALONG_3 - the truant Eric still hasn’t made it to the classroom

	GET_ALONG - Eric is not in class when he should be

	GET_OFF_PLANT - Eric is standing on a plant

	GET_OUT - Eric is somewhere that only staff are allowed to be

	GET_UP - Eric is sitting on the floor

	NEVER_AGAIN - a teacher thinks Eric knocked him down

	NO_BIKES - Eric is riding a bike inside the skool

	NO_CATAPULTS - Eric is firing a catapult

	NO_HITTING - Eric is throwing a punch

	NO_JUMPING - Eric is jumping

	NO_SITTING_ON_STAIRS - Eric is sitting on the stairs

	NO_STINKBOMBS - Eric has dropped a stinkbomb

	NO_TALES - the swot gets his just deserts

	NO_WATERPISTOLS - Eric is firing a water pistol

	NO_WRITING - Eric is writing on a blackboard

	SIT_DOWN - Eric is standing up in class

	SIT_FACING_STAGE - Eric is not facing the headmaster during assembly

	STAY_IN_CLASS - Eric popped out of class and then returned



The lines message IDs are used internally, and should not be changed. If a
particular lines message ID is missing from the list, then lines will not be
given for the infraction it refers to. So if there were no entry in the
LinesMessages section with the lines message ID NO_HITTING, no lines
would ever be dished out for hitting.




[MessageConfig]

The MessageConfig section contains messages and message-related
configuration parameters that apply skool-wide. Each line in this section has
the form:

parameterName, parameterValue





Recognised parameters are:


	BoardDirtyConditionId - the ID of the condition used to indicate that a
blackboard is dirty; this identifier may be used in the [LessonMessages]
section

	GrasseeMacro - the macro that expands to a grassee’s name in the swot’s
speech

	HiScoreLabel - the label for the hi-score in the score box

	LinesMessageTemplate - the template used for lines messages

	LinesRecipientMacro - the macro that will be replaced in
LinesMessageTemplate (see above) by the lines recipient’s name

	LinesTotalLabel - the label for the lines total in the score box

	Newline - the character that will be replaced by a newline character in
messages written on a blackboard, in a lines bubble, or in the lesson box

	NumberOfLinesMacro - the macro that will be replaced in
LinesMessageTemplate (see above) by the number of lines being given

	ScoreLabel - the label for the score in the score box

	TitleMacro - the macro that expands to a teacher’s title in the swot’s
speech

	UpAYearMessage - the message printed in the lesson box when Eric has
completed the game and advanced a year






[Mice]

Each line in the Mice section has the form:

mouseId, spriteGroupId, animatoryState, (x, y), commandListId, spriteXY





where:


	mouseId is the unique ID of the mouse

	spriteGroupId is the ID of the sprite group to use
for the mouse

	animatoryState is the mouse’s initial animatory state

	(x, y) are the mouse’s initial coordinates

	commandListId is the ID of the command list that the
mouse will use

	spriteXY is the coordinates of the mouse within its sprite (used for
detecting whether Eric has caught it)



Any mouse defined in this section will be catchable by ERIC, and show up in the
on-screen mouse inventory when caught.




[MouseLocations]

The MouseLocations section defines the locations at which a new immortal
mouse may appear after Eric catches one. Each line has the form:

x, y





where (x, y) are the coordinates of the location.




[NoGoZones]

Each line in the NoGoZones section corresponds to a region of the skool
Eric is never supposed to enter. The lines take the form:

zoneId, minX, maxX, bottomY, topY





where:


	zoneId is a descriptive ID for the zone (not used anywhere else)

	minX is the lower x-coordinate of the zone

	maxX is the upper x-coordinate of the zone

	bottomY is the y-coordinate of the bottom of the zone

	topY is the y-coordinate of the top of the zone



Whenever Eric is spotted in one of these zones by a teacher, the GET_OUT
lines message will be delivered in screeching tones.




[Plants]

The Plants section contains information about plants. Each line describes a
single plant, and has the form:

plantId, spriteGroupId, x, y, commandListId





where:


	plantId is the unique ID of the plant

	spriteGroupId is the ID of the sprite group to use
for the plant

	x and y are the coordinates of the plant (when it is growing or has
grown)

	commandListId is the unique ID of the command list
that the plant will use when watered






[QuestionsAndAnswers ...]

The [QuestionsAndAnswers ...] section names take the form:

QuestionsAndAnswers characterId





where characterId is the unique ID of a teacher (see [Characters]).

There are at least three types of entry in a [QuestionsAndAnswers ...]
section. The first type of entry is the Question entry:

Question, questionId, groupId, questionTemplate





where:


	questionId is a unique (within the section) ID for the question

	groupId is the ID of the group of Q&A pairs (see below) the question is
associated with

	questionTemplate is the question template



There should be at least one Question entry in a
[QuestionsAndAnswers ...] section.

The second type of entry is the Answer entry:

Answer, questionId, answerTemplate





where:


	questionId is the ID of the question to which this is the answer

	answerTemplate is the answer template



There should be one Answer entry for each Question entry in a
[QuestionsAndAnswers ...] section.

The third type of entry in this section is the Q&A pair entry:

groupId, word1, word2





where


	groupId is the ID of the group of Q&A pairs to which this particular pair
belongs; the ID should be something other than Question, Answer,
SpecialGroup, SpecialQuestion or SpecialAnswer, which are reserved
words in a [QuestionsAndAnswers ...] section

	word1 and word2 are the words that will replace the macros in
questionTemplate and answerTemplate



There should be at least one Q&A pair defined per [QuestionsAndAnswers ...]
section (and ideally many more than one, to prevent the question-and-answer
sessions between teachers and the swot from being rather monotonous).

The optional fourth type of entry in a [QuestionsAndAnswers ...] section
consists of three lines:

SpecialQuestion, question
SpecialAnswer, answer
SpecialGroup, groupId, qaPairIndex





and is used to define the “special” question Eric will need the answer to in
order to obtain the relevant teacher’s safe combination letter. The
SpecialQuestion keyword is followed by the text of the special question
(which will be posed by the teacher at the start of the lesson). The
SpecialAnswer keyword is followed by the text of the swot’s answer to the
special question (which will contain a macro to be expanded). The
SpecialGroup keyword is followed by groupId (which specifies the ID of
the group of Q&A Pairs from which the “magic word” will be taken), and
qaPairIndex (which is 0 or 1, and refers to the element of the Q&A pair
that will be the magic word). Once Eric has figured out what the magic word is,
he will need to write it on a blackboard and hope that the teacher sees it,
whereupon the teacher will reveal his safe combination letter.

If the SpecialQuestion, SpecialAnswer and SpecialGroup lines are
not present, there will be no magic word associated with the teacher. In that
case, simply knocking the teacher over with a catapult pellet will make him
reveal his safe combination letter.




[RandomLocations]

The RandomLocations section contains lists of suitable locations for the
characters to visit when they go on walkabouts (e.g. during playtime). Each
line has the form:

characterId, (x1, y1), (x2, y2)...





where:


	characterId is the character’s unique ID (see [Characters])

	(x1, y1) and so on are the coordinates of locations in the skool



There must be at least one pair of coordinates per line, and there should be
one line for each character defined in the [Characters] section.




[Rooms]

The Rooms section contains one line for each room or region in the skool
that Eric will be expected to show up at when the timetable requires it. Each
line has the form:

roomId, name, topLeft, bottomRight, getAlong





where:


	roomId is the room’s unique ID

	name is the room’s name (as displayed in the lesson box at the bottom of
the screen)

	topLeft is the coordinates of the top-left corner of the room

	bottomRight is the coordinates of the bottom-right corner of the room

	getAlong is Y if Eric should get lines for being in the room when the
timetable does not require his presence






[Routes]

The Routes section is one of the most important sections in the ini file.
It defines the routes (a route may be considered as a list of staircases) that
the characters must take to get from where they are to wherever they are going.
Any errors here will result in the characters wandering aimlessly around the
skool, unable to find classrooms, the playground, or the toilets. Disaster!

Anyway, each line in this section has the form:

homeFloorId, *|destFloorId[, destFloorId[, ...]], nextStaircaseId





where:


	homeFloorId is the unique ID of one floor (see [Floors]) - the
‘home’ floor

	destFloorId is the unique ID of another floor (see [Floors]) - the
destination floor

	nextStaircaseId is the unique ID of the staircase (see [Staircases])
that must be climbed or descended first on a journey from the home floor to
the destination floor



How this works is best illustrated by example. Let’s look at the routes defined
for the bottom floor in Back to Skool to everywhere else in the skool:

Bottom, LeftMiddle, LeftTop, UpToToilets
Bottom, GirlsMiddle, GirlsTop, GirlsSkoolLower
Bottom, *, UpToStage





The first line says that to get from the bottom floor (Bottom) to the
floors called LeftMiddle and LeftTop (see [Floors]), the first
staircase you need to navigate is UpToToilets (see [Staircases]). The
second line says that to get from the bottom floor to the middle floor
(GirlsMiddle) or top floor (GirlsTop) in the girls’ skool, you need to
use the GirlsSkoolLower staircase first. The third line says that to get
anywhere else (*) from the bottom floor, you need to take the stairs up to
the stage (UpToStage).




[Safe]

The Safe section contains a single line of the form:

topLeft, size, coords





where:


	topLeft is the coordinates (in (x, y) form) of the top left of the
normal image of the safe

	size is the size of the image (in (width, height) form)

	coords are the coordinates (in (x, y) form) of the safe in the play
area



The safe images can be found in mutables.png (or mutables_ink.png and
mutables_paper.png if GraphicsMode is 1 - see [ScreenConfig]).
mutables.png is arranged so that the inverse image of the safe is at
(x + width, y), where (x, y) are the coordinates of the normal image of the
safe.

If the safe will never need to flash (as in Back to Skool), topLeft and
size will not be used, and so may be set to any value.




[ScreenConfig]

The ScreenConfig section contains parameters that determine the appearance
and layout of the screen. Each line has the form:

parameterName, parameterValue





Recognised parameters are:


	Background - the background colour of the screen

	EscapeAlarmInk - the ink colour to use for the escape alarm message box
used by Albert

	EscapeAlarmPaper - the paper colour to use for the escape alarm message
box used by Albert

	FlashCycle - length of the cycle in which a flashable object (such as a
shield) flashes once

	FontInk - the ink colour in font.png (used to create transparency)

	FontPaper - the paper colour in font.png (used to create transparency)

	GraphicsMode - 0 = hi-res colour; 1 = spectrum mode, meaning just two
colours (ink and paper) per 8x8-pixel block

	Height - the height of the screen (in tiles)

	HiScoreOffset - the y-coordinate offset used to position the printing of
the hi-score

	InitialColumn - the x-coordinate of the leftmost column of the screen
when the game starts

	InventoryKey - pixels of this colour in inventory item and captured mouse
images will be made transparent when the items are drawn

	InventoryPos - the x, y coordinates of the inventory on screen

	InventorySize - the size of the inventory (width and height in tiles)

	LessonBoxInk - the ink colour to use when writing in the lesson box

	LessonBoxPos - the x, y coordinates of the lesson box on screen

	LinesInk - the ink colour used in a lines message box

	LinesOffset - the y-coordinate offset used to position the printing of
the lines total

	LinesPaperEric - the paper colour used in a lines message box when Eric
is the recipient

	LinesPaperOther - the paper colour used in a lines message box when Eric
is not the recipient

	LogoPos - the x, y coordinates of the logo on screen

	MessageBoxColour - the colour of the ‘inside’ of the message box in the
MESSAGE_BOX image (see [Images]); pixels of this colour in the image
will take on the designated paper colour (e.g. LinesPaperEric) when the
message box is drawn

	MessageBoxKey - pixels of this colour in the message box image will be
made transparent when the message box is drawn; in the stock Pyskool, this
feature is not used

	MouseInventoryInk - the ink colour to use when writing in the mouse
inventory

	MouseInventoryPos - the x, y coordinates of the mouse inventory on screen

	MouseInventorySize - the size of the mouse inventory (width and height in
tiles)

	Scale - the scale factor to use for graphics; 1 = original Spectrum size

	ScoreBoxInk - the ink colour to use when writing in the score box

	ScoreBoxPos - the x, y coordinates of the score box on screen

	ScoreOffset - the y-coordinate offset used to position the printing of
the score

	ScrollFps - the number of frames per second at which the screen should be
scrolled (when the game starts and during play); raise it to make the screen
scroll faster, or lower it to scroll more slowly

	ScrollColumns - the number of columns to scroll when Eric approaches the
left or right edge of the screen

	ScrollLeftOffset - how close Eric can get to the right edge of the screen
before it scrolls left

	ScrollRightOffset - how close Eric can get to the left edge of the screen
before it scrolls right

	SecretInk - the ink colour of the message box used to display a safe,
bike or storeroom combination character

	SecretPaper - the paper colour of the message box used to display a safe,
bike or storeroom combination character

	SkoolInkKey - the transparent colour used in the skool ink image

	SpeechBubbleInk - the ink colour to use when drawing text in a speech
bubble

	SpeechBubbleKey - the transparent colour used in the speech bubble image
(bubble.png)

	SpeechBubbleInset - the inset (in pixels at scale 1) of the text window
from the top-left of a speech bubble

	SpeechBubbleLipCoords - the coordinates of the lip within the speech
bubble image (bubble.png)

	SpeechBubbleLipSize - the size of the speech bubble lip (width and height
in tiles)

	SpeechBubbleSize - the size of the bounding rectangle of a speech bubble,
including the lip (width and height in tiles)

	SpriteKey - the transparent colour used in the sprite matrix image

	SpriteMatrixWidth - the number of sprites in a row of the sprite matrix
image

	Width - the width of the screen (in tiles)






[SherryDrop]

The SherryDrop section defines a drop of sherry (as knocked out of a cup by
a catapult pellet). It contains a single line of the form:

objectId, spriteGroupId, commandListId, hitXY





where:


	objectId is a unique ID for the drop of sherry

	spriteGroupId is the ID of the sprite group to use
for the drop of sherry

	commandListId is the unique ID of the command list
that the drop of sherry will use when knocked out of a cup

	hitXY is the coordinates of the sherry drop within its sprite (used for
collision detection)






[Shields]

The Shields section contains information about shields. Each line describes
a single shield, and has the form:

score, topLeft, size, coords





where:


	score is the number of points awarded for making the shield flash or
unflash

	topLeft is the coordinates (in (x, y) form) of the top left of the
normal image of the shield

	size is the size of the image (in (width, height) form)

	coords are the coordinates (in (x, y) form) of the shield in the play
area



The shield images can be found in mutables.png (or mutables_ink.png and
mutables_paper.png if GraphicsMode is 1 - see [ScreenConfig]).
mutables.png is arranged so that the inverse image of a shield is at
(x + width, y), where (x, y) are the coordinates of the normal image of the
shield.




[SitDownMessages]

The SitDownMessages section contains one or more lines for each teacher of
the form:

characterId, sitDownMessage





where


	characterId is the teacher’s unique ID (see [Characters])

	sitDownMessage is what the teacher may say while standing at the
classroom doorway at the start of a lesson



If multiple sit-down messages are defined for a teacher, he will choose one at
random when the time comes. If no sit-down messages are defined for a teacher,
he will say nothing at the classroom doorway.




[SkoolLocations]

The SkoolLocations section contains a list of descriptive IDs for commonly
used locations in the skool. These descriptive IDs are used by the GoTo
command in the command lists that control the characters.
Each line in this section has the form:

locationId, x, y





where


	locationId is the descriptive ID

	x and y are the coordinates of the location



An example of a location ID is BlueRoomDoorway, which means exactly what
you think it means.




[Sounds]

Each line in the Sounds section has the form:

soundId, path





where


	soundId is the unique ID of a sound effect

	path is the location of the sound file on disk (relative to the sounds
directory)



path may be the full name of the sound file (e.g. tune.wav), or just the
base name (e.g. tune); in the latter case, Pyskool will look for a file with
the base name and a .wav or .ogg suffix.

Recognised IDs and the sound effects they refer to are:


	ALARM: Albert is telling Mr Wacker that Eric is escaping

	ALL_SHIELDS: Eric has hit all the shields

	BELL: the bell

	BIKE: Eric has written the bike combination on a blackboard

	CATAPULT: Eric has fired his catapult

	CONKER: Eric has knocked out Albert with a conker

	DESK: Eric has found the water pistol or stinkbombs in a desk

	FROG: Eric has caught the frog or placed it in a cup

	HIT0, HIT1: Eric has thrown a punch

	JUMP: Eric has jumped into the air

	KISS: Eric has kissed someone

	KNOCKED_OUT: Eric has been knocked over or out of his chair

	LINES1: lines screech 1

	LINES2: lines screech 2

	MOUSE: Eric has caught a mouse

	OPEN_SAFE: Eric has opened the safe (by getting the combination)

	SAFE_KEY: Eric has got the safe key

	SHERRY: Eric has filled the water pistol with sherry

	SHIELD: Eric has hit a shield

	STOREROOM_KEY: Eric has written the storeroom combination on a blackboard

	TUNE: opening tune

	UP_A_YEAR: Eric has gone up a year

	WALK0, WALK1, WALK2, WALK3: Eric walking

	WATER_PISTOL: Eric has fired his water pistol



If an entry for a given sound effect is not present in the Sounds section,
then that sound effect will never play. For example, if there is no
CATAPULT entry, then Eric’s firings of that weapon will be completely
silent.




[SpecialPlaytimes]

The SpecialPlaytimes section contains a list of lesson IDs that refer to
playtimes which will be considered “special”. A special playtime does not
appear in the timetable proper (though you could insert it), but with a given
probability (defined by the SpecialPlaytimeProbability parameter in the
[TimetableConfig] section) a special playtime chosen at random is
substituted for an actual playtime from the main timetable. In Skool Daze the
SpecialPlaytimes section looks like this:

Playtime-Mumps
Playtime-SwotGrass
Playtime-HiddenPeaShooter





Thus, occasionally in Skool Daze mode a playtime will be one of those where you
have to steer clear of the pestilential bully, prevent the swot from reaching
the head’s study, or fix the race to the fire escape between the tearaway and
the headmaster.




[SpriteGroup ...]

The [SpriteGroup ...] section names take the form:

SpriteGroup spriteGroupId





where spriteGroupId is a unique ID for a group of sprites in sprites.png
(see Graphics) - such as BOY for the little boys, or TEARAWAY
for the tearaway. The unique ID can be anything you like; it is used only in
the [Characters] section later on to link a character to a specific group
of sprites.

Each line in a SpriteGroup section represents a single sprite from
sprites.png and has the form:

spriteId, index





where


	spriteId is the descriptive ID for the sprite (unique within the section)

	index is the index of the sprite as it appears in sprites.png



Recognised sprite IDs and their meanings are:


	ARM_UP: arm up (as if writing or opening door) - Eric, the tearaway, the
Heroine and teachers

	BENDING_OVER: bending over - Eric

	BIKE_ON_FLOOR: bike resting on the floor

	BIKE_UPRIGHT: bike upright

	CATAPULT0: firing catapult (1) - Eric and the tearaway

	CATAPULT1: firing catapult (2) - Eric and the tearaway

	CONKER: conker

	DESK_EMPTY: desk lid (empty desk)

	DESK_STINKBOMBS: desk lid (with stinkbombs)

	DESK_WATER_PISTOL: desk lid (with water pistol)

	FLY: catapult pellet in flight

	HITTING0: hitting (1) - Eric and the bully

	HITTING1: hitting (2) - Eric and the bully

	HOP1: frog hopping (phase 1)

	HOP2: frog hopping (phase 2)

	KISSING_ERIC: kissing Eric - the Heroine

	KNOCKED_OUT: lying flat on back - kids

	KNOCKED_OVER: sitting on floor holding head - adults

	PLANT_GROWING: plant (half-grown)

	PLANT_GROWN: plant (fully grown)

	RIDING_BIKE0: riding bike (1) - Eric

	RIDING_BIKE1: riding bike (2) - Eric

	RUN: mouse

	SHERRY_DROP: drop of sherry (knocked from a cup)

	SIT: frog sitting

	SITTING_ON_CHAIR: sitting on a chair - kids

	SITTING_ON_FLOOR: sitting on the floor - kids

	STINKBOMB: stinkbomb cloud

	WALK0: standing/walking (1) - all characters

	WALK1: midstride (1) - all characters

	WALK2: standing/walking (2) - all characters

	WALK3: midstride (2) - all characters

	WATER_DROP: drop of water (knocked from a cup)

	WATER0: water fired from a pistol (phase 1)

	WATER1: water fired from a pistol (phase 2)

	WATER2: water fired from a pistol (phase 3)

	WATER3: water fired from a pistol (phase 4)

	WATER4: water fired from a pistol (phase 5)

	WATERPISTOL: shooting water pistol - Eric






[Staircases]

The Staircases section contains details of the staircases in the skool.
Each line has the form:

staircaseId[:alias], bottom, top[, force]





where:


	staircaseId is the staircase’s unique ID

	alias is an optional alias for the staircase (also unique)

	bottom and top are the coordinates of the bottom and top of the
staircase (in (x, y) form)

	force, if present, indicates that the staircase must be climbed or
descended by Eric if he moves to a location between the bottom and the top



In the stock Pyskool, force is used for the staircase in Back to Skool that
leads down to the assembly hall stage; it’s the only staircase in the game that
you must go up or down if you approach it.

An example of a line from the Staircases section is:

UpToStudy:DownFromStudy, (91, 10), (84, 3)





which defines the staircase that leads up to the head’s study in Back to Skool.
This staircase’s unique ID is UpToStudy, but it can also be referred to as
DownFromStudy. These unique IDs and aliases are used in the [Routes]
section.




[Stinkbombs]

Each line in the Stinkbombs section has the form:

characterId, stinkbombId, spriteGroupId, commandListId, animationPhases, stinkRange





where:


	characterId is the unique ID of the character to give stinkbomb-dropping
ability to

	stinkbombId is the unique ID of the stinkbomb

	spriteGroupId is the ID of the sprite group to use
for the stinkbomb when dropped

	commandListId is the unique ID of the command list
that the stinkbomb will use when dropped

	animationPhases is the ID of the sequence of
animation phases that the stinkbomb cloud will use

	stinkRange - the maximum distance at which the stinkbomb can be smelt



Each character whose unique ID appears in this section will be given the
ability to drop a stinkbomb. In the stock Pyskool this will be Eric.




[Timetable]

The Timetable section contains an ordered list of lesson IDs. Lessons
happen starting with the first in the list, and proceed one by one to the end
of the list. When the last lesson in the list is finished, the game loops back
round to the first lesson in the list.

An example of a lesson ID is Creak-BlueRoom-1, which refers to the first of
a set of lessons in which Eric and the swot are taught by Mr Creak in the Blue
Room. The lesson ID could be anything, but it’s helpful to make it descriptive.

A lesson can be thought of as a set of entries from the personal timetables
of the characters. These sets of entries can be found in the [Lesson ...]
sections.




[TimetableConfig]

The TimetableConfig section contains configuration parameters in the
format:

parameterName, parameterValue





Recognised parameters are:


	AssemblyPrefix - what a lesson ID must start with to be
regarded as Assembly

	GetAlongTime - maximum time allowed to leave a classroom or the
playground after the bell rings

	LessonLength - the length of a lesson period in frames (see GameFps)

	LessonStartTime - when a lesson starts (i.e. teacher will tell kids to
sit down) in frames (see GameFps) from the start of the period

	PlaytimePrefix - what a lesson ID must start with to be
regarded as Playtime

	SpecialPlaytimeProbability - the probability that a playtime in the main
timetable will be replaced by a special playtime






[TimingConfig]

The TimingConfig section contains configuration parameters in the format:

parameterName, parameterValue





Recognised parameters are:


	BendOverDelay - the delay (in frames) before Eric stands upright after
bending over (as when releasing mice)

	DethronedDelay - the delay before a character rises after being pushed
out of a seat

	EricWalkDelay - the number of frames between successive movements of
Eric when he’s walking

	JumpDelay - the delay (in frames) before Eric returns to the floor after
jumping

	KnockedOverDelay - the delay before a knocked over teacher rises

	KnockoutDelay - the delay before a knocked out kid rises

	GoFast - the number of frames between successive movements of a character
who is moving quickly; this parameter is used when a character is running or
speaking

	GoFaster - the number of frames between successive movements of a
character who is moving even quicker; this parameter is used when a character
is throwing a punch or firing a catapult

	GoSlow - the number of frames between consecutive movements of a
character who is moving slowly; this parameter is used when a character is
walking at a normal pace

	ReprimandDelay - the delay before a knocked over teacher gives lines to
someone for knocking him over

	SpeedChangeDelayRange - the minimum and maximum values of the delay
between a character’s walking speed changes (used by kids, who walk half the
time and run the other half)

	TellEricDelay - the length of time a character will wait for Eric to
respond to a message before repeating it






[Walls]

The Walls section contains details of the impenetrable barriers in the
skool. Each line has the form:

wallId, x, bottomY, topY





where:


	wallId is the wall’s unique ID

	x is the wall’s x-coordinate

	bottomY and topY are the y-coordinates of the bottom and top of the
wall



For example:

FarLeftWall, 0, 20, 0





defines the wall at the far left (x=0) of the skool, which stretches from the
bottom floor (y=20) to the ceiling of the top floor (y=0).




[Water]

Each line in the Water section has the form:

characterId, waterId, spriteGroupId, commandListId, animationPhases





where:


	characterId is the unique ID of the character to give water pistol-firing
ability to

	waterId is the unique ID for the water sprite

	spriteGroupId is the ID of the sprite group to use
for the water fired from the pistol

	commandListId is the unique ID of the command list
that the water will use when fired from the pistol

	animationPhases is the ID of the sequence of
animation phases that the water will use after being
fired from the water pistol



Each character whose unique ID appears in this section will be given the
ability to fire a water pistol. In the stock Pyskool this will be Eric alone;
he is the only character with a water pistol-firing sprite.




[WaterDrop]

The WaterDrop section defines a drop of water (as knocked out of a cup by a
catapult pellet). It contains a single line of the form:

objectId, spriteGroupId, commandListId, hitXY





where:


	objectId is a unique ID for the drop of water

	spriteGroupId is the ID of the sprite group to use
for the drop of water

	commandListId is the unique ID of the command list
that the drop of water will use when knocked out of a cup

	hitXY is the coordinates of the water drop within its sprite (used for
collision detection)






[Windows]

The Windows section contains details of the windows in the game. Each line
has the form:

windowId, x, bottomY, topY, initiallyShut, openerCoords, shutTopLeft, size, coords, descentPhases[, notABird]





where:


	windowId is the window’s unique ID

	x is the window’s x-coordinate

	bottomY and topY are the y-coordinates of the bottom and top of the
window

	initiallyShut is Y if the window should be shut when the game starts

	openerCoords are the coordinates (in (x, y) form) at which a character
should stand in order to open the window

	shutTopLeft is the coordinates (in (x, y) form) of the top left of the
image of the window when shut

	size is the size of the image (in (width, height) form)

	coords are the coordinates (in (x, y) form) of the window in the skool

	descentPhases is the ID of the sequence of
animation phases to use for Eric if he jumps out of
the window

	notABird is the ID of the command list Mr Wacker should switch to when
Eric hits the ground after falling out of the window; if defined, Eric will
be paralysed when he hits the ground



The window images can be found in mutables.png (or mutables_ink.png and
mutables_paper.png if GraphicsMode is 1 - see [ScreenConfig]).
mutables.png is arranged so that the image of a window when open is at
(x + width, y), where (x, y) are the coordinates of the image of the same
window when shut. The open/shut images for any given window are the same size.







          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
Commands

The [CommandList ...] sections contain commands and parameters that control
the characters. These commands are described in the following sections.


AddLines

The AddLines command is used to add to Eric’s lines total after he
has been found guilty of misdeeds. The number of lines to be added to the total
is specified by the command’s sole argument.




Catch

The Catch command is used internally to control Eric while he’s
trying to catch a mouse or frog. It makes Eric bend over, checks to see whether
an animal is present (and if it is, adds it to the appropriate inventory), and
then makes Eric stand up.




ChaseEricOut

The ChaseEricOut command controls Miss Take as she chases Eric,
with the intent of making him leave the girls’ skool and return to the boys’.
It is very similar to the ShadowEric command, except that it makes the
headmistress go no further than the skool gate (the x-coordinate of which is
supplied as the command’s sole argument).




CheckIfTouchingEric

The CheckIfTouchingEric command is used by the bully when he has
mumps. It checks whether the bully is touching Eric, and if he is, raises the
signal that is being watched by whoever is on mumps duty (Mr Rockitt by
default).




ConductAssembly

The ConductAssembly command makes the headmaster tell the kids
they’re in detention.




ConductClass

The ConductClass command is used by teachers to make them conduct
lessons. The command controls a teacher from the point where he reaches the
edge of the blackboard. If the teacher is teaching Eric, it makes the teacher
wait until the swot shows up, and then hands over control to the
ConductClassWithEric command. Otherwise it immediately hands over
control to the ConductClassWithoutEric command.

The command takes two optional arguments:


	the name of the signal that indicates that the swot is ready

	the name of the group of questions and answers to use for the lesson (see
[QuestionsAndAnswers ...]); if not specified, the questions and answers will
be chosen at random






ConductClassWithEric

The ConductClassWithEric command is used internally to control a
teacher who is teaching Eric and the swot. It takes over control from the
ConductClass command as soon as the swot shows up and sits down. It’s
responsible for making the teacher:


	listen to the swot’s tales (if any)

	dish out lines after the swot has told tales

	wipe the blackboard

	walk to the middle of the blackboard

	write on the blackboard (occasionally)

	tell the kids what to do during class, or ask questions and wait for the
answers

	hunt down Eric if he’s playing truant



The command takes a single, optional argument: the name of the group of
questions and answers to use for the lesson (see [QuestionsAndAnswers ...]);
if not specified, the questions and answers will be chosen at random.




ConductClassWithoutEric

The ConductClassWithoutEric command is used internally to control
a teacher who is teaching a class that does not contain Eric and the swot. It
takes over control from the ConductClass command immediately. It
controls a teacher from the point where he reaches the edge of the blackboard
and is responsible for making him:


	wipe the blackboard

	walk to the middle of the blackboard

	write on the blackboard (occasionally)

	tell the kids what to do during class






DoAssemblyDuty

The DoAssemblyDuty command is used to control Mr Withit as he does
assembly duty. It makes Mr Withit do nothing (i.e. stand still) unless Eric is
absent from the assembly hall, in which case it hands over control to the
FetchEric command; when that command exits, the command list is
restarted. The DoAssemblyDuty command itself exits when assembly is over
(i.e. Mr Wacker has finished speaking).

The command takes two arguments that inform Mr Withit when to start and when to
stop assembly duty:


	the signal that indicates when assembly has started

	the signal that indicates when assembly has finished



These signals are raised by Mr Wacker.




DropStinkbomb

The DropStinkbomb command is used internally to make a
stinkbomb-carrying character (i.e. Eric) drop a stinkbomb.




DumpWaterPistol

The DumpWaterPistol command is used internally to make Eric throw
away the water pistol. The water pistol will be relocated in a random desk, and
will contain water (as opposed to sherry).




EndGame

The EndGame command is used to end the game (when Eric has
exceeded the lines limit, for example).




EvadeMouse

The EvadeMouse command is used internally to control a character
who is scared of mice and has spotted one nearby. It makes the character either
jump up and down or stand on a chair.




Fall

The Fall command is used to control the descent of a drop of water
or sherry from a cup, or the descent of a conker from a tree. Until the object
has been knocked out of its resting place, the command does nothing. Otherwise,
it guides the object to the floor, and interacts appropriately with any
character it hits. After the object has hit somebody or the floor, it is hidden
from view.




FallToFloor

The FallToFloor command is used internally to control Eric’s
descent to the floor. It is invoked in the following situations:


	by the RideBike command when Eric falls off a bike that has lost
momentum

	when Eric falls off a fully grown plant that has just died






FetchEric

The FetchEric command is used internally by the
ConductClassWithEric command to make a teacher track down the truant
Eric and shepherd him back to the classroom.




FindEric

The FindEric command is used to make a character look for Eric (to
give him a message); it also stops the skool clock (which can be restarted
later on with a SetClock command) to allow Eric to be found before the
bell rings. When Eric has been found, he is frozen so that he has no choice but
to listen to the message.




FindEricIfMissing

The FindEricIfMissing command is used by whichever teacher is on
dinner duty to make him go and look for Eric if he’s not in the dinner hall.




FindSeat

The FindSeat command is used to make a boy or girl find a seat in
a classroom and sit down; it also makes the character find another seat if he’s
knocked out of one (unless the character is the swot, who must return to the
same seat to avoid having to move his speech bubble during lessons).

The command takes two optional True (1) or False (0) arguments (which are both
True by default). When the first argument is True, the character will seek out
the back seat in the classroom first. Otherwise, when the second argument is
True, the character will go to the next seat in front of him, or to the back
seat if there isn’t one (which is what happens when a character is pushed out
of his seat). When both arguments are False, the character will sit in the seat
he’s standing next to (which is what happens when a character rises after being
decked while seated).




FireCatapult

The FireCatapult command is used internally to make a
catapult-carrying character (i.e. Eric or the tearaway) fire his catapult.




FireNowAndThen

The FireNowAndThen command is used as an argument to the
SetControllingCommand command to make the tearaway fire his catapult
occasionally. If the command decides that the time is ripe to send a projectile
whizzing through the air, it passes control to the FireCatapult command.




FireWaterPistol

The FireWaterPistol command is used internally to make a water
pistol-carrying character (i.e. Eric) fire his water pistol.




Flight

The Flight command is used internally to control Eric when he is
either stepping off a fully grown plant through an open window or over the
closed skool gate, or flying over the closed skool gate (after hitting it while
standing on the saddle of the bike - see the RideBike command). The
command guides Eric through his trajectory to the ground, upon which he may
land with his feet, his backside, or his back.




Floored

The Floored command is used internally to control a child
character who has been pushed out of his seat or knocked out cold (by Eric, the
bully, or the tearaway). The command keeps the character on the floor for a
brief period and then makes him stand up; after that, the character will
either resume whatever he was doing before, or look for another seat (see
FindSeat).




Follow

The Follow command is used by little boys 2-11 to sync their
movements with those of the stampede leader, little boy 1. (Internally it syncs
destinations, and hands over control to the GoTo command.) The command
takes a single argument: the unique ID of the character to follow.




Freeze

The Freeze command is used internally by the FindEric
command to freeze Eric once he has been found. It continually monitors the
keyboard to check whether Eric has acknowledged delivery of a message (by
pressing ‘U’). It is then up to the TellEric or TellEricAndWait
command to unfreeze Eric as appropriate.




GoTo

The GoTo command is arguably the most important command ever in
the history of Pyskool. Without it, the characters would stay rooted to the
spot, Pyskool would be boring, and you wouldn’t be reading this. Sad. Anyway,
GoTo takes a single argument, which must be one of the following:


	a skool location identifier (as found in the [SkoolLocations] section)

	an identifier of the form Location:characterId, where characterId is
the unique ID of a character



A Location:characterId identifier resolves to the current location of the
character with the given ID. To change the recognised prefix of such
identifiers, set the LocationMarker configuration parameter in the
[GameConfig] section of the ini file.

I leave it to the reader to guess what the GoTo command does.




GoToRandomLocation

The GoToRandomLocation command is used in many command lists to
make a character go to one of his random locations.




GoTowardsXY

The GoTowardsXY command is used internally to make a character
turn round or take one step in the direction of the destination x and y
coordinates specified in the two arguments, instead of continuing all the way
to the destination. The command is used primarily by the FindEric and
FetchEric commands, which require tracking of a moving target (our hero)
rather than a fixed destination.




GoToXY

The GoToXY command is used internally to make a character go to a
location specified by an (x, y) pair of coordinates. In fact, the GoTo
command resolves its location ID parameter into an (x, y) pair of coordinates
and then hands over control to GoToXY. Unsurprisingly, GoToXY takes two
arguments: x and y, as in:

GoToXY, 23, 17





Although GoToXY is not used explicitly in any of the stock command lists,
there is nothing to stop you using it in a command list if you wish.




GrassAndAnswerQuestions

The GrassAndAnswerQuestions command is used by the swot to make
him tell tales to the teacher just before class starts, and answer the
teacher’s questions later.




Grow

The Grow command is used to control the growth of a plant after it
has been watered. If the plant is not growing, the command does nothing.
Otherwise, it animates the plant growth, and lifts any characters who are
standing on the plant. When the plant dies, it drops any characters who were
standing on the plant, and hides it from view.

The Grow command takes three arguments, which specify the delay between the
plant being watered and:


	appearing at half-height

	growing to full height

	dying






Hit

The Hit command is used internally to make a fist-wielding
character (i.e. Eric or the bully) throw a punch.




HitNowAndThen

The HitNowAndThen command is used as an argument to the
SetControllingCommand command to make the bully throw a punch
occasionally. If the command decides that the time is ripe to send a fist
whizzing through the air, it passes control to the Hit command.




Hop

The Hop command is used internally by the MoveFrog command
to control the movements of a frog as it embarks on a long hop or a short hop,
or turns round.




Jump

The Jump command is used internally to control Eric while he’s
jumping. It lifts him into the air, checks to see whether he has reached a
shield, a cup, or the safe, and then lets him drop (unless there is an
unconscious kid or a plant pot below).




JumpIfOpen

The JumpIfOpen command is used to jump back or forward in the
command list if a door is open. The command takes two arguments: the door’s
unique ID (see [Doors]), and the number of commands to jump back or
forward, as in:

JumpIfOpen, SkoolDoor, -5








JumpIfShut

The JumpIfShut command is used to jump back or forward in the
command list if a door is shut. The command takes two arguments: the door’s
unique ID (see [Doors]), and the number of commands to jump back or
forward, as in:

JumpIfShut, SkoolGate, 3








JumpOffSaddle

The JumpOffSaddle command is used internally to control Eric when
he is jumping off the saddle of the bike (see the RideBike command). It
lifts him into the air, checks to see whether he has reached a cup (into which
a frog may be placed), and then lets him drop to the floor.




Kiss

The Kiss command is used internally to control Eric while he’s
kissing (or trying to kiss) Hayley. If Hayley is neither facing Eric nor in
front of him at the time of the attempted kiss, Eric will take a step forward
and then back again, with no kiss scored. If Hayley is in front of Eric and
facing him, one of two things will happen: (a) Eric will score a kiss, or (b)
Hayley will smack Eric in the face (if she feels he’s tried to grab one kiss
too many already). If Eric does land a kiss, his lines total will be reduced by
1000 (or to zero if he has less than 1000 lines).




KnockedOver

The KnockedOver command is used internally to control an adult
character who has been downed by a catapult pellet or a stampeding boy.
KnockedOver stuns the character, makes him reveal his safe combination
letter (if appropriate), also makes him give lines to the nearest main child
character (if any), and then helps him up off the floor; after that, the
character will resume whatever he was doing before.




MonitorEric

The MonitorEric command is used as a subcommand (set by the
SetSubcommand command) by Miss Take; it makes her keep an eye out for
Eric in the girls’ skool when it’s not playtime. It takes two arguments:


	the ID of the command list to switch to in order to chase Eric

	the x-coordinate beyond which Eric must be to be regarded as worth chasing






MoveAboutUntil

The MoveAboutUntil command is used to make a character repeatedly
walk a random number of paces away from a fixed point (the walkabout origin)
and back again. The walkabout origin is the point the character reached before
MoveAboutUntil was invoked.

The command takes two arguments:


	a signal to listen for; when it is raised, the character will proceed to the
next command in the command list

	(optional) the minimum and maximum distances to walk away from the walkabout
origin; the default is (1, 7)






MoveBike

The MoveBike command is used to control the bike when Eric is not
sitting on the saddle. If the bike has not been unchained yet, or is resting on
the ground, the command does nothing. Otherwise, it moves the bike along until
it runs out of momentum, at which point it will fall over.




MoveDeskLid

The MoveDeskLid command is used to control a desk lid when it has
been raised (by Eric). When the desk lid is not raised, the command does
nothing. Otherwise, it transfers the contents of the desk (if any) to Eric’s
pocket. When the desk lid is ready to drop - after the delay specified by the
command’s sole argument - it is hidden from view.




MoveFrog

The MoveFrog command is used to control the movements of a frog.
When a frog decides to move, it chooses from three options: turn round, short
hop, and long hop. Each of these movements is controlled by the Hop
command.

The MoveFrog command takes three arguments, which specify the probability
that the frog will:


	keep still if Eric is not nearby

	turn round (if he decides to move at all)

	attempt a short hop (instead of a long hop) if not turning round






MoveMouse

The MoveMouse command is used to control the movements of a mouse:
sprint up and down a few times, hide for a brief period, repeat.

The MoveMouse command takes four arguments:


	the minimum and maximum delays before the mouse comes out of hiding (e.g.
(5, 20))

	the minimum and maximum number of sprints the mouse will make before hiding
(e.g. (2, 5))

	the minimum and maximum distances of a sprint (e.g. (2, 5))

	the minimum and maximum number of sprint sessions the mouse will engage in
before dying (if released by Eric; e.g. (10, 41))






MovePellet

The MovePellet command is used to control a catapult pellet. If
the pellet has not been launched, the command does nothing. Otherwise, it moves
the pellet through the air, checking whether any shields or unfortunate
characters lie in its path. When a pellet has finished its flight, it is hidden
from view.




MoveWater

The MoveWater command is used to control a jet of water fired from
a water pistol. If the water has not been fired, the command does nothing.
Otherwise, it moves the water through the air, checking whether any cups or
plant pots lie in its path. When the water has finished its flight, it is
hidden from view.




OpenDoor

The OpenDoor command makes a character open a door. It takes one
argument: the unique ID of the door (see [Doors]) to open. If the door is
already open, the command does nothing.




Pause

The Pause command is used internally by the Kiss command to
occupy Hayley (i.e. prevent her from executing her current command list) while
she is responding to an attempted kiss from Eric. The command exits (and Hayley
will resume her current command list) after the response (a kiss or slap in the
face) has been made.




ReleaseMice

The ReleaseMice command is used internally to control Eric when
he’s releasing mice. It makes Eric bend over, releases up to five mice
(depending on how many Eric has caught) at the spot in front of Eric, and then
makes Eric stand up.




Restart

The Restart command is used to return to the first command in the
command list.




RideBike

The RideBike command is used internally to control Eric while he’s
on the bike. It may hand over control to another command depending on what
happens while Eric is on the bike:


	FallToFloor (if the bike runs out of momentum)

	JumpOffSaddle (if Eric jumps off the saddle)

	Flight (if the bike hits the closed skool gate while Eric is standing
on the saddle)






Say

The Say command is used internally to make a character say
something. It takes two arguments: the thing to say, and an optional second
argument specifying whether to notify listeners when done (which defaults to
False, and is set to True only during lessons so that the teacher and the
swot don’t talk over each other). For example:

Say, 'Hello mum!'





would make a character say ‘Hello mum!’.

Although Say is not used explicitly in any of the stock command lists,
there is nothing to stop you using it in a command list if you wish.




SetClock

The SetClock command restarts the skool clock with a certain
amount of time remaining until the bell rings, specified by the sole parameter.
It is used (for example) to ensure that the bell rings shortly after Mr Wacker
has finished delivering the detention message in assembly.




SetControllingCommand

The SetControllingCommand command is an awkwardly named command
that takes another command - and that command’s parameters - as its arguments,
as in:

SetControllingCommand, OtherCommand, SomeParameter





What happens then is that on every pass through the main loop of the game,
OtherCommand (the ‘controlling’ command) will be called for the character
so controlled. The idea is that OtherCommand will make the character do
something continuously (e.g. walk fast) or occasionally (e.g. fire a catapult
or throw a punch).

The ‘controlling’ command remains in effect until the following command in the
command list has completed.




SetRestartPoint

The SetRestartPoint command has the effect of discarding itself
and all previous commands in the command list, so that any Restart or
StartLessonIfReady command appearing further down the command list will
bring control back up the list to the command following SetRestartPoint
instead of the top of the list.




SetSubcommand

The SetSubcommand command places a subcommand in the character’s
current command list. This subcommand is then executed on each pass through the
main loop, before and in addition to the current command in the character’s
command list. The parameters of SetSubcommand are the subcommand name and
the subcommand’s parameters, as in:

SetSubcommand, SomeSubcommand, SomeParameter1, SomeParameter2





SetSubcommand is used (for example) by Miss Take to place the
MonitorEric subcommand in her command list, which makes her keep an eye
out for Eric in the girls’ skool when it’s not playtime.

The subcommand persists for the duration of the command list (which is usually
until the end of the lesson).




ShadowEric

The ShadowEric command is used by Mr Wacker when he’s been alerted
that Eric is trying to escape (see the WatchForEric command). The
command makes Mr Wacker track down Eric and shadow him until the bell rings.




ShutDoor

The ShutDoor command makes a character shut a door. It takes one
argument: unique ID of the door (see [Doors]) to shut. If the door is
already shut, the command does nothing.




Signal

The Signal command is used to raise a signal. Signals are used,
for example, by the MoveAboutUntil command to make a character pace up
and down until the time is right to proceed to the next command in the command
list. This scheme allows characters’ movements to be coordinated.

The Signal command takes a single argument: the name of the signal to
raise.

See also the Unsignal command.




SitForAssembly

The SitForAssembly command makes a character find a spot to sit
down in the assembly hall until the headmaster has finished speaking. The
command takes three arguments:


	the signal to wait for before standing up (see StartAssemblyIfReady)

	the direction to face when sitting down (-1 for left, 1 for right)

	(optional) the minimum and maximum distances the character should walk back
to find a spot to sit; the default is (1, 4)






SitStill

The SitStill command is always found immediately after the
FindSeat command when it appears in a command list. It makes the character
stay seated (in other words, do nothing).




StalkAndHit

It sounds brutal, but there really was a command list in Back to Skool that
contained instructions to make the bully track down Eric’s girlfriend in order
to knock her about. In Pyskool, the equivalent (but more flexible) command is
StalkAndHit, which takes a single argument: the unique ID of the
character to track down.

StalkAndHit should be used as an argument to the
SetControllingCommand command, as in:

SetControllingCommand, StalkAndHit, HEROINE





As a controlling command, StalkAndHit continually updates the character’s
destination to match that of the target, and makes him throw punches now and
then along the way.




StartAssemblyIfReady

The StartAssemblyIfReady command makes Mr Wacker return to the
start of the command list unless it’s time to go down to the stage for
assembly, at which point the signal named by the command’s sole argument will
be raised (so that the kids know when to sit down; see SitForAssembly).




StartDinnerIfReady

The StartDinnerIfReady command is used by teachers on dinner duty.
It restarts the command list unless it’s time to start looking out for Eric
during dinner.




StartLessonIfReady

The StartLessonIfReady command is used by teachers to get a lesson
under way (if enough time has passed since the bell rang). The command takes a
single argument: the name of the signal that indicates which room the teacher
will teach in (which is listened for by the kids in the classroom so that they
know when to sit down). If it’s not time to start the lesson yet, the command
list is restarted.




Stink

The Stink command is used to control a stinkbomb after it’s been
dropped. If the stinkbomb has not been dropped, the command does nothing.
Otherwise, it animates the stinkbomb cloud, checking whether any characters
with a sensitive nose are nearby, and compelling them to open the nearest
window. When the stench has dissipated - after a period specified by the
command’s sole argument - the cloud is hidden from view.




StopEric

The StopEric command is used internally by the WatchForEric
command to make Albert raise his arm and alert Mr Wacker when he has spotted
Eric trying to escape. The command exits when Eric leaves the ‘danger zone’
near Albert.




TellClassWhatToDo

The TellClassWhatToDo command is used internally by the
ConductClassWithEric and ConductClassWithoutEric commands to make
a teacher tell the class what to do (which usually involves writing an essay,
turning to a certain page in their books, or revising for their exams).




TellEric

The TellEric command is used to make a character deliver the
message specified in the command’s sole argument, and then unfreeze Eric (if he
was frozen, as by the FindEric command).




TellEricAndWait

The TellEricAndWait command is used to make a character deliver
the message specified in the command’s sole argument, and then unfreeze Eric
(if he was frozen, as by the FindEric command) as soon as he has
registered understanding of the message so delivered. If Eric is slow to
respond, the message will be repeated periodically.




TellKidsToSitDown

The TellKidsToSitDown command is used internally by the
StartLessonIfReady command to make a character (a teacher, normally)
tell the kids to sit down when it’s time to start class.




TripPeopleUp

The TripPeopleUp command is used as an argument to the
SetControllingCommand command to make a character trip up anyone in his
path as he proceeds to his destination.




Unsignal

The Unsignal command is used to lower a signal previously raised.
It takes a signal name as its sole argument.




WaitAtDoor

The WaitAtDoor command is used to make Albert wait at the skool
door or the skool gate until all the characters are on the correct side and
it’s therefore safe to shut the door or gate. The character flags B and G
(see [Characters]) are used to determine which skool (and hence which side
of the door) a character belongs to. The WaitAtDoor command takes a single
argument: the unique ID of the door or gate (see [Doors]).




WaitUntil

The WaitUntil command is used to make a character do nothing (i.e.
stand still) until a signal is raised. The command takes a single argument: the
name of the signal to wait for.




WalkAround

The WalkAround command makes a character walk up and down about a
fixed point (the walkabout origin).

The command takes two arguments:


	the number of walkarounds to do - a “walkaround” being a short trip away from
the walkabout origin (wherever the character was when the WalkAround
command was invoked) and back again

	(optional) the minimum and maximum distances to walk away from the walkabout
origin; the default is (1, 7)



The WalkAround command is also used internally by the MoveAboutUntil
command.




WalkFast

The WalkFast command is used as an argument to
SetControllingCommand to make a character walk fast.




WalkUpOrDown

The WalkUpOrDown command is used internally by the
ConductClassWithEric and ConductClassWithoutEric commands to make
a teacher turn round and walk three paces. Called repeatedly, it makes the
teacher walk up and down.




WatchForEric

The WatchForEric command is used as an argument to
SetControllingCommand to make Albert keep his eyes peeled for our hero
jumping out of skool windows. If Albert does spot Eric trying to escape,
control is handed over to the StopEric command.

The WatchForEric command takes five arguments


	the ID of the character who will be alerted by Albert when he spots Eric
trying to escape

	the ID of the command list to use for the character who will be alerted

	the alert message to be screamed by Albert

	the x-coordinate beyond which Eric should be regarded as trying to escape (96
in the stock Pyskool, which is the x-coordinate of the boys’ skool door)

	the minimum and maximum distances to the left of Albert that Eric would have
to be between for Albert to raise the alarm






WipeBoard

The WipeBoard command is used internally by the
ConductClassWithEric and ConductClassWithoutEric commands to make
a character wipe a blackboard clean.




Write

The Write command is used internally to control Eric while he’s
writing on a blackboard. It would be of no use in a command list.




WriteOnBoard

The WriteOnBoard command is used internally by the
ConductClassWithEric, ConductClassWithoutEric and
WriteOnBoardUnless commands to make a character write on a blackboard.
The character should (ideally) be standing at the target blackboard before this
command is invoked.

The command takes a single argument, namely the message to be written on the
board. So if you wanted to use the command explicitly in a command list, you
could put something like:

GoTo, ExamRoomBlackboard:Middle
WriteOnBoard, 'Pyskool rox!'








WriteOnBoardUnless

The WriteOnBoardUnless command is used by the tearaway to make him
write on a blackboard unless the board has already been written on or the
signal named in the command’s sole argument has been raised.







          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
ai

Classes that implement the commands found in command lists, such as
GoTo and ConductClass.


	
class pyskool.ai.AddLines(lines)

	Command that adds lines to Eric’s total. May be used by any character.





	Parameters:	lines (number) – The lines to add to Eric’s total.






	
execute()

	Make a character add lines to Eric’s total.





	Returns:	self.










	
is_interruptible()

	Return whether this command is interruptible.





	Returns:	False.














	
class pyskool.ai.Catch

	Command that makes Eric catch a mouse or frog (if one is at hand).


	
catch_animal()

	Make Eric catch a mouse or frog if one is at the location of his
hand.





	Returns:	None.










	
get_commands()

	Return the list of steps (methods) to execute for this complex
command. The steps are:


	catch_animal()

	stand_up()








	
stand_up()

	Make Eric stand up straight after bending over to catch a mouse or
frog.





	Returns:	self.














	
class pyskool.ai.ChaseEricOut(min_x)

	Command that makes a character chase Eric up to the girls’ side of the
skool gate. It is used by Miss Take if she spots him in the girls’ skool
when it’s not playtime.





	Parameters:	min_x – The x-coordinate at which the character should stop chasing
Eric, and stand on guard.






	
execute()

	Make a character take the next step while chasing Eric, or remain by
his side if already there.





	Returns:	A GoTowardsXY command if the character hasn’t caught
up with Eric yet, or None if the character is already by
Eric’s side.














	
class pyskool.ai.CheckIfTouchingEric(eric_knows_signal, eric_has_mumps_signal)

	Command that checks whether a character is touching Eric. This command
is used by Angelface when he has mumps.





	Parameters:	
	eric_knows_signal – The signal used to indicate that Eric has been
told to avoid the character who has mumps.

	eric_has_mumps_signal – The signal to use to indicate that Eric has
mumps.










	
execute()

	Make a character check whether he’s touching Eric (and has therefore
transmitted his disease). If Eric has been informed of the character’s
condition, and the character is touching Eric, the appropriate signal
is raised to indicate that Eric has mumps.





	Returns:	self.














	
class pyskool.ai.Command

	Abstract class from which all other command classes inherit. Subclasses
should implement a method named execute.


	
execute()

	Execute the command. The default implementation provided here does
nothing; subclasses should override this method to supply the desired
behaviour.





	Returns:	self










	
finish()

	Perform any required cleanup before the command is removed from the
command stack. This method is called on a controlling command just
before it is terminated, and on an interruptible command when it is
interrupted. The default implementation provided here does nothing;
subclasses override this method as necessary.






	
is_GoTo()

	Return whether this command is one of the GoTo commands.
This method returns False, but the GoTo commands override it
and return True.






	
is_interruptible()

	Return whether this command is interruptible. An interruptible
command can be terminated immediately by a command list restart. This
method returns True, but subclasses may override it and return
False instead.










	
class pyskool.ai.CommandList(character)

	A list of commands built from a CommandListTemplate. Maintains
a command stack from which commands are popped after they have finished
executing.





	Parameters:	character (Character) – The character to be controlled (the command list owner).






	
add_command(command)

	Add a command to the stack.





	Parameters:	command – The Command to add.










	
command()

	Hand control of the command list owner over to the current command.
The steps taken are:


	Add the controlling command (if there is one, and the current
command is interruptible) to the stack.

	Add the subcommand (if there is one, and the current command is
interruptible) to the stack.

	If the command stack is empty, pull the next command from the
command list and add it to the stack.

	Execute the current command (the last command on the stack).

	Act on the return value from the current command; if it is:





	None, then return from this method;

	self (the command itself), then pop the current command from the
stack and go to step 3;

	another command, then add that command to the stack and go to step
4.











	
get_GoTo_destination()

	Return the destination of the character, or None if he is not
under the control of a GoTo command.






	
is_GoToing()

	Return whether the character is under the control of one of the
GoTo commands.






	
is_interruptible()

	Return False if the command stack contains an uninterruptible
command, True otherwise.






	
jump(offset)

	Jump forwards (or backwards) in the list of commands.





	Parameters:	offset – The offset by which to jump. -2 means the previous
command, -1 means the current command, 0 means the next
command, and 1 means the next command but one.










	
restart(index=None)

	Restart this command list. When the current command finishes, the
next command will be the first command in the command list, or the
command denoted by index.





	Parameters:	index – The index of the command at which to restart (defaults to
0).










	
set_GoTo_destination(destination)

	Set the destination of the character if he is under the control of a
GoTo command.





	Parameters:	destination (Location) – The destination to set.










	
set_controlling_command(command)

	Set the controlling command for this command list. The controlling
command, if set, is executed before and in addition to the current
command on the stack (see command()). WalkFast and
HitNowAndThen are examples of commands that are used as
controlling commands.





	Parameters:	command (Command) – The command to set as the controlling command.










	
set_restart_point()

	Remove the current and all previous commands from the command list.
When the current command finishes, the next command will be regarded as
the first for the purposes of a command list restart.






	
set_subcommand(command_name, args)

	Set the subcommand for this command list. The subcommand, if set, is
executed before and in addition to the current command on the stack
(see command()). MonitorEric is an example of a command
that is used as a subcommand.





	Parameters:	
	command_name – The name of the command to set as the subcommand.

	args – The subcommand’s arguments.














	
set_template(template)

	Set the template for this command list. This method is used to
replace a character’s current command list (e.g. when the bell rings).
Any interruptible commands remaining on the stack are removed (after
calling their finish() methods); uninterruptible
commands are left in place so that they have a chance to finish before
the new command list kicks in.





	Parameters:	template – The CommandListTemplate to use.














	
class pyskool.ai.CommandListTemplate(command_list_id)

	Template from which a specific command list may be created (one or more
times). command_list_id is an identifier for the command list, used only
for debugging purposes.


	
add_command(command_class, *params)

	Add a command to this template.





	Parameters:	
	command_class – The class object that implements the command.

	params – The command’s parameters.














	
get_commands(start)

	Return a list of commands (initialised command class instances)
constructed from this template.





	Parameters:	start – The index of the first command. If start is 0, the
entire list of commands is returned. If start is N>0,
the first N commands are omitted.














	
class pyskool.ai.ComplexCommand

	Abstract class used by many commands that require a fixed sequence of
steps to be executed with little or no conditional logic. Each step is
implemented as a separate method. Subclasses must implement a method named
get_commands that returns a list of the names of the methods to execute.


	
done()

	Terminate this complex command. This method is typically used as the
last step in the sequence, and is provided for convenience to
subclasses.





	Returns:	self (to terminate this command)










	
execute()

	Execute the next step (method) in this command’s sequence. What
happens after that depends on the return value from the method called;
if it is:


	False, then the step is taken to be still in progress, and will
be executed again the next time this method is called

	None, then the step is taken to be finished

	self (this command), then the entire command is taken to be
finished, and no more steps will be executed

	another command, then that command is added to the stack (so that
it will be executed before proceeding to the next step)








	
restart()

	Return to the first step in the sequence.










	
class pyskool.ai.ConductAssembly

	Command that makes a character conduct assembly. This involves
delivering a detention message.


	
execute()

	Make a character deliver a detention message. After the message has
been delivered, a signal is raised to indicate that assembly is
finished.





	Returns:	self if the detention message has been delivered, or a
Say command.














	
class pyskool.ai.ConductClass(signal=None, qa_group=None)

	Command that makes a character conduct a class. It determines whether
the character is teaching Eric, and passes control to a
ConductClassWithEric or ConductClassWithoutEric command
as appropriate.





	Parameters:	
	signal – The signal raised by the swot to indicate that he’s ready to
start the lesson.

	qa_group – The Q&A group from which to choose questions and answers
for the teacher and the swot; if None, the Q&A group
will be chosen at random from those available each time a
question and answer is generated.










	
execute()

	Make a character conduct a class.





	Returns:	A ConductClassWithoutEric command if the character is
not teaching Eric; None if the character is teaching Eric
but the swot hasn’t shown up yet; a
ConductClassWithEric command otherwise.














	
class pyskool.ai.ConductClassWithEric(qa_group=None)

	Command that makes a character conduct a class with Eric. This involves
waiting until the swot shows up, listening to him while he tells tales and
responding appropriately, wiping the board (if there is one in the room),
optionally writing on the board, and finally either telling the kids what
to do and pacing up and down until the bell rings, or starting a
question-and-answer session with the swot. At various points in this
process, the character will also respond to the swot’s tales about Eric
being missing.





	Parameters:	qa_group – The Q&A group from which to choose questions and answers
for the teacher and the swot; if None, the Q&A group
will be chosen at random from those available each time a
question and answer is generated.






	
execute()

	Make a character perform the next required action while conducting
the class.





	Returns:	None if the character should do nothing at the moment, or
an appropriate Command.














	
class pyskool.ai.ConductClassWithoutEric

	Command that makes a character conduct a class without Eric. This
involves wiping the board (if there is one in the room), optionally writing
on the board, telling the kids what to do, and then pacing up and down
until the bell rings.


	
execute()

	Make a character perform the next step in conducting this class.





	Returns:	A WipeBoard command; a GoToXY command to
make the character return to the middle of the board after
wiping it; a WriteOnBoard command (possibly); a
TellClassWhatToDo command; or a WalkUpOrDown
command.














	
class pyskool.ai.DoAssemblyDuty(assembly_started, assembly_finished)

	Command that makes a character perform assembly duty. This involves
checking whether Eric is present in the assembly hall, and chasing him down
if he’s absent.





	Parameters:	
	assembly_started – The signal that indicates assembly has started.

	assembly_finished – The signal that indicates assembly is finished.










	
execute()

	Make a character perform assembly duty. If the character has just
successfully herded the absent Eric to the assembly hall, the
character’s command list is restarted (so that he returns to the back
of the assembly hall and starts the Eric-watching process over again).





	Returns:	self if the character has just herded Eric back to the
assembly hall, or assembly has finished; None if it’s not
time to start keeping an eye out for Eric yet, or Eric is
present; or a FetchEric command.














	
class pyskool.ai.DropStinkbomb

	Command that makes a character drop a stinkbomb.


	
drop()

	Make a character drop a stinkbomb (thus creating a stinkbomb cloud).





	Returns:	None.










	
get_commands()

	Return the list of steps (methods) to execute for this complex
command. The steps are:


	raise_arm()

	drop()

	lower()

	done()








	
is_interruptible()

	Return whether this command is interruptible.





	Returns:	False.










	
lower()

	Make a character lower his arm after dropping a stinkbomb.





	Returns:	None.










	
raise_arm()

	Make a character raise his arm in preparation for dropping a
stinkbomb.





	Returns:	None.














	
class pyskool.ai.DumpWaterPistol

	Command that makes Eric throw away his water pistol.


	
dump_water_pistol()

	Make Eric drop his water pistol.





	Returns:	None.










	
get_commands()

	Return the list of steps (methods) to execute for this complex
command. The steps are:


	dump_water_pistol()

	stand_up()








	
stand_up()

	Make Eric stand up straight again after dropping his water pistol.





	Returns:	None.














	
class pyskool.ai.EndGame

	Command that ends the game. May be used by any character.


	
execute()

	Make a character end the game.





	Returns:	None.














	
class pyskool.ai.EvadeMouse(delay)

	Command that makes a character stand on a chair or start jumping.





	Parameters:	delay – The delay before the character will get off a chair or stop
jumping.






	
execute()

	Make a character:


	stand or remain standing on a chair, or

	start or continue jumping, or

	finish either one of these activities (after a certain time).







	Returns:	self if the character has finished standing on a chair or
jumping, None otherwise.










	
is_interruptible()

	Return whether this command is interruptible.





	Returns:	False (a musophobe must not be distracted while evading a
mouse).














	
class pyskool.ai.Fall

	Command that controls a falling object (a conker or a drop of water or
sherry).


	
execute()

	Control an object that may be falling. If the object is not falling,
do nothing; otherwise make it fall a bit, taking appropriate action if
it hits the floor or a person’s head.





	Returns:	None.










	
is_interruptible()

	Return whether this command is interruptible.





	Returns:	False (falling objects do not care about the bell).














	
class pyskool.ai.FallToFloor

	Command that controls Eric’s descent to the floor (as from a bike that
has run out of momentum, or a plant that has died).


	
execute()

	Make Eric fall. If he has reached the floor, he will assume a
sitting position.





	Returns:	self if Eric has hit the floor, or None if he’s still
falling.














	
class pyskool.ai.FetchEric

	Command that makes a character find and hover around Eric until he goes
to wherever he should be.


	
execute()

	Make a character take the next step in the search for Eric.





	Returns:	self if Eric is where he should be, or is due to be
expelled; None if the character is already beside Eric; or
a GoTowardsXY command.














	
class pyskool.ai.FindEric

	Command that makes a character go and find Eric.


	
execute()

	Make a character take the next step in the search for Eric. The
skool clock is stopped to ensure that the character has enough time to
find him. When Eric is found, he is frozen until the character decides
to unfreeze him.





	Returns:	self if Eric has been found and frozen, None if Eric has
been found but cannot be frozen at the moment, or a
GoTowardsXY command.














	
class pyskool.ai.FindEricIfMissing

	Command that makes a character start looking for Eric if he’s not where
he should be.


	
execute()

	Make a character check whether Eric is where he should be, and go
looking for him if not.





	Returns:	self if Eric is where he should be, or a FetchEric
command.














	
class pyskool.ai.FindSeat(go_to_back=True, move_along=True)

	Command that makes a character find a seat and sit down.





	Parameters:	
	go_to_back – True if the character should seek out the back seat,
False if he should find the nearest seat.

	move_along – True if the character should move along to the next
seat even if he’s already standing beside one, False
otherwise.










	
execute()

	Make a character find a seat, turn round if he’s already beside one
but facing the wrong way, or sit down.





	Returns:	self if the character sat down, None if he’s beside a
seat but had to turn round, or a GoToXY command to
send him to a seat.














	
class pyskool.ai.FireCatapult

	Command that makes a character fire a catapult.


	
aim()

	Make a character start or finish raising his catapult to eye level.





	Returns:	False if the character has yet to raise the catapult to eye
level, or None if he has raised it to eye level.










	
fire()

	Make a character launch a catapult pellet.





	Returns:	None.










	
get_commands()

	Return the list of steps (methods) to execute for this complex
command. The steps are:


	aim()

	fire()

	lower()

	done()








	
is_interruptible()

	Return whether this command is interruptible.





	Returns:	False (a catapult-firing character should finish what he’s
started).










	
lower()

	Make a character start or finish lowering his catapult.





	Returns:	False if the character has not finished lowering his
catapult, or None if he has.














	
class pyskool.ai.FireNowAndThen

	Command that makes a character check whether it’s a good time to launch
a catapult pellet, and act accordingly. This command is used as a
controlling command (see CommandList.set_controlling_command()).


	
get_command()

	Returns the command that should be used to make a character fire his
catapult.





	Returns:	A FireCatapult command.










	
ready()

	Return whether this character will fire a catapult pellet. The
answer will be True if all the conditions described in
HitOrFireNowAndThen.ready are met, and also:


	The character’s x-coordinate is divisible by 4.

	The character’s catapult pellet is not currently airborne.

	The character chooses to.












	
class pyskool.ai.FireWaterPistol

	Command that makes a character fire a water pistol.


	
aim()

	Make a character take out his water pistol and aim it.





	Returns:	None.










	
fire()

	Make a character pull the trigger of his water pistol (thus
releasing a jet of water or sherry).





	Returns:	None.










	
get_commands()

	Return the list of steps (methods) to execute for this complex
command. The steps are:


	aim()

	fire()

	lower()

	done()








	
is_interruptible()

	Return whether this command is interruptible.





	Returns:	False.










	
lower()

	Make a character put his water pistol back in his pocket.





	Returns:	None.














	
class pyskool.ai.Flight(phases, command_list_id=None)

	Command that controls Eric’s flight through a designated sequence of
locations (relative to the starting point) and animatory states.





	Parameters:	
	phases – The phases of animation to proceed through.

	command_list_id – The ID of the command list Mr Wacker should switch
to when Eric hits the ground; if not blank, Eric
will be paralysed when he hits the ground.










	
execute()

	Move Eric to the next location and phase of animation in the
flight sequence.





	Returns:	self if Eric has landed safely; a Freeze command if
Eric has landed but is now immobilised (as when falling from a
great height); or None otherwise.














	
class pyskool.ai.Floored(count)

	Command that controls a character who has been knocked to the floor.





	Parameters:	count – The delay before the character should get up.






	
execute()

	Make a character remain on the floor, or get up if enough time has
passed.





	Returns:	self if the character has got up and is ready to resume
normal service, None otherwise.










	
is_interruptible()

	Return whether this command is interruptible.





	Returns:	False (the bell cannot raise characters from the floor).














	
class pyskool.ai.Follow(character_id)

	Command that makes a character follow another character.





	Parameters:	character_id – The ID of the character to follow.






	
execute()

	Make a character go to the same destination as another character.





	Returns:	self if the destination has been reached, or a GoTo
command.














	
class pyskool.ai.Freeze

	Command that controls Eric while he’s frozen (as by the
FindEric command).


	
execute()

	Control Eric while he’s frozen. Each time this method is called, a
check is made whether Eric has acknowledged understanding of the
message being delivered to him (see TellEricAndWait).





	Returns:	None.














	
class pyskool.ai.GoTo(location_id, destination=None, go_one_step=False)

	Command that makes a character go to a location.





	Parameters:	
	location_id – The ID of the location to go to (may be None).

	destination (Location) – The location to go to (required if location_id
is None).

	go_one_step – True if this command should terminate after
sending the character one step towards the
destination.










	
execute()

	Make a character take the next step towards his destination.





	Returns:	self if the character has already reached his destination,
None otherwise.










	
is_GoTo()

	Return whether this command is one of the GoTo commands.





	Returns:	True.














	
class pyskool.ai.GoToRandomLocation

	Command that makes a character go to a location chosen at random.


	
execute()

	Make a character start the journey towards a randomly chosen
location.





	Returns:	A GoTo command.














	
class pyskool.ai.GoToXY(x, y)

	Command that makes a character go to a location specified by x- and
y-coordinates.





	Parameters:	
	x – The x-coordinate of the location to go to.

	y – The y-coordinate of the location to go to.














	
class pyskool.ai.GoTowardsXY(x, y)

	Command that makes a character take one step towards a location.





	Parameters:	
	x – The x-coordinate of the location to go towards.

	y – The y-coordinate of the location to go towards.














	
class pyskool.ai.GrassAndAnswerQuestions

	Command that makes a character tell tales and answer the teacher’s
questions during a lesson. It is used by the swot.


	
execute()

	Make a character tell a tale, wait for a teacher to ask a question,
or answer a teacher’s question.





	Returns:	None if the character should do nothing at the moment, or
an appropriate Command.














	
class pyskool.ai.Grow(half, full, die)

	Command that controls a plant.





	Parameters:	
	half – The delay between being watered and appearing at half-height.

	full – The delay between being watered and growing to full height.

	die – The delay between being watered and dying.










	
execute()

	Control a plant. If the plant has recently been watered, it will
grow to full height and then die (disappear).





	Returns:	None.










	
is_interruptible()

	Return whether this command is interruptible.





	Returns:	False (plants do not care about the bell).














	
class pyskool.ai.Hit

	Command that makes a character throw a punch.


	
aim()

	Make a character start or finish raising his fist.





	Returns:	None if the character’s fist is fully raised, False
otherwise.










	
get_commands()

	Return the list of steps (methods) to execute for this complex
command. The steps are:


	aim()

	hit()

	lower()

	done()








	
hit()

	Make a character deck anyone unfortunate enough to come into contact
with his raised fist.





	Returns:	None.










	
is_interruptible()

	Return whether this command is interruptible.





	Returns:	False.










	
lower()

	Make a character start or finish lowering his fist.





	Returns:	None if the character’s fist is fully lowered, False
otherwise.














	
class pyskool.ai.HitNowAndThen

	Command that makes a character check whether it’s a good time to throw a
punch, and act accordingly. This command is used as a controlling command
(see CommandList.set_controlling_command()).


	
get_command()

	Returns the command that should be used to make a character throw a
punch.





	Returns:	A Hit command.










	
ready()

	Return whether this character will throw a punch. The answer will be
True if all the conditions described in
HitOrFireNowAndThen.ready() are met, and also:


	There is someone punchable in front of the character.

	The character chooses to.












	
class pyskool.ai.HitOrFireNowAndThen

	Abstract command that makes a character check whether it’s a good time
to throw a punch or launch a catapult pellet, and act accordingly.


	
execute()

	Make a character start throwing a punch or launching a catapult
pellet if conditions are favourable.





	Returns:	self if conditions are not favourable, or a Hit or
FireCatapult command.










	
ready()

	Return whether now is a good time for this character to throw a
punch or fire a catapult pellet. The answer will be True if all the
following conditions are met:


	The character is not on a staircase.

	There are no adults nearby facing the character.

	The character is standing upright.












	
class pyskool.ai.Hop(phases)

	Command that controls a frog while it’s hopping.





	Parameters:	phases – The phases of animation to use for the hop.






	
execute()

	Move a frog to the next phase of animation in the hop.





	Returns:	self if the hop is finished, or None.










	
is_interruptible()

	Return whether this command is interruptible.





	Returns:	False.














	
class pyskool.ai.Jump

	Command that makes a character jump.


	
down()

	Make a character return to the floor after jumping.





	Returns:	None.










	
get_commands()

	Return the list of steps (methods) to execute for this complex
command. The steps are:


	up()

	down()

	done()








	
up()

	Make a character jump into the air.





	Returns:	None.














	
class pyskool.ai.JumpIfOpen(door_id, offset)

	Command that jumps forwards or backwards in a character’s command list
if a specified door or window is open.





	Parameters:	
	door_id – The ID of the door or window to check.

	offset (number) – The offset by which to jump in the command list.










	
execute()

	Jump forwards or backwards in a character’s command list if a
specified door or window is open.





	Returns:	self.














	
class pyskool.ai.JumpIfShut(door_id, offset)

	Command that jumps forwards or backwards in a character’s command list
if a specified door or window is shut.





	Parameters:	
	door_id – The ID of the door or window to check.

	offset (number) – The offset by which to jump in the command list.










	
execute()

	Jump forwards or backwards in a character’s command list if a
specified door or window is shut.





	Returns:	self.














	
class pyskool.ai.JumpOffSaddle

	Command that controls Eric after he’s jumped off the saddle of the bike.


	
check_cup()

	Place the frog in a cup (if Eric has it and has reached a cup).





	Returns:	None










	
fall()

	Guide Eric back to the floor after jumping off the saddle of the
bike.





	Returns:	False if Eric has not reached the floor yet, or None
otherwise.










	
get_commands()

	Return the list of steps (methods) to execute for this complex
command. The steps are:


	rise()

	reach()

	check_cup()

	fall()

	done()








	
reach()

	Make Eric rise again and raise his arm (to reach for a cup).





	Returns:	None.










	
rise()

	Make Eric rise off the bike saddle.





	Returns:	None.














	
class pyskool.ai.Kiss

	Command that controls Eric while he kisses (or attempts to kiss) another
character.


	
finish_kiss()

	Control Eric as he finishes a kiss or attempted kiss. If there was
no one within kissing range in front of Eric, he will return from the
midstride position. If there was someone kissable within kissing range,
they will either finish the kiss with Eric (if they accepted it) or
deck him (if they decided to slap him instead).





	Returns:	None.










	
get_commands()

	Return the list of steps (methods) to execute for this complex
command. The steps are:


	start_kiss()

	finish_kiss()

	done()








	
start_kiss()

	Control Eric as he begins an attempt to kiss someone. If there is no
one within kissing range in front of Eric, he will move midstride. If
there is someone kissable within kissing range, they will either accept
the kiss or slap him.





	Returns:	None.














	
class pyskool.ai.KnockedOver(delay, reprimand_delay, sleep)

	Command that controls an adult character who has been knocked over by a
catapult pellet or conker.





	Parameters:	
	delay – The delay before the character rises.

	reprimand_delay – The delay before the character gives lines to
someone for knocking him over.

	sleep – Whether the character should remain unconscious for a while
(as when Albert is struck by a conker).










	
execute()

	Control an adult character who has been knocked over. If conditions
are right and the character holds a safe combination letter, he will
reveal it. If enough time has passed since being knocked over, the
character will give lines if any suitable recipient is nearby.





	Returns:	self if the character has got up and is ready to resume
normal service, None otherwise.














	
class pyskool.ai.MonitorEric(command_list_id, chase_x)

	Command that makes a character keep an eye out for Eric, and act
appropriately if he’s spotted. It is used by Miss Take to make her chase
Eric out of the girls’ skool if she spots him there when it’s not
playtime. This command is used as a subcommand (see
CommandList.set_subcommand()).





	Parameters:	
	command_list_id – The ID of the command list to execute if Eric is
spotted.

	chase_x – The x-coordinate beyond which Eric must be for the monitor
to start chasing Eric.










	
execute()

	Make a character check whether they can see Eric in the girls’ skool
during a non-playtime period, and switch to an appropriate command list
if so.





	Returns:	self.














	
class pyskool.ai.MoveAboutUntil(signal, walkabout_range=(1, 7))

	Command that makes a character walk up and down until a signal is
raised.





	Parameters:	
	signal – The signal to wait for.

	walkabout_range – The minimum and maximum distances to walk away from
the walkabout origin.










	
execute()

	Make a character walk up and down unless the signal has been raised.





	Returns:	self if the signal has been raised, or a WalkAround
command.














	
class pyskool.ai.MoveBike

	Command that controls a bike when Eric’s not sitting on the saddle.


	
execute()

	Control a bike when Eric’s not sitting on the saddle. If the bike is
resting on the floor or is not yet visible, do nothing; otherwise move
the bike forwards.





	Returns:	None.










	
is_interruptible()

	Return whether this command is interruptible.





	Returns:	False (the bike does not care about the bell).














	
class pyskool.ai.MoveDeskLid(delay)

	Command that controls a desk lid.





	Parameters:	delay – The delay before an opened desk lid closes.






	
execute()

	Control a desk lid. If the desk lid is not raised, nothing happens.
If the desk lid has just been raised, the contents of the desk (if any)
are delivered to the lid-raiser.





	Returns:	None.














	
class pyskool.ai.MoveDoor(barrier_id, shut)

	Abstract command that makes a character open or close a door or
window.





	Parameters:	
	barrier_id – The ID of the door or window.

	shut – True if the door or window should be shut, False
otherwise.










	
get_commands()

	Return the list of steps (methods) to execute for this complex
command. The steps are:


	raise_arm()

	move_door()

	lower_arm()

	done()








	
is_interruptible()

	Return whether this command is interruptible.





	Returns:	False.










	
lower_arm()

	Make a character lower his arm after opening or closing a door or
window.





	Returns:	None.










	
move_door()

	Open or close a door or window.





	Returns:	None.










	
raise_arm()

	Make a character raise his arm in preparation for opening or closing
a door or window, or do nothing if the door/window is already in the
desired state.





	Returns:	self if the door/window is already in the desired state, or
None if the character raised his arm.














	
class pyskool.ai.MoveFrog(p_hop, p_turn_round, p_short_hop)

	Command that controls a frog.





	Parameters:	
	p_hop – Probability that the frog will keep still if Eric is not
nearby.

	p_turn_round – Probability that the frog will turn round.

	p_short_hop – Probability that the frog will attempt a short hop
(instead of a long hop) if not turning round.










	
execute()

	Control a frog.





	Returns:	A Hop command, or None if the frog decides not to
move.










	
is_interruptible()

	Return whether this command is interruptible.





	Returns:	False (frogs do not care about the bell).














	
class pyskool.ai.MoveMouse(hide_range, sprints, sprint_range, life_range)

	Command that controls a mouse.





	Parameters:	
	hide_range (2-tuple) – Minimum and maximum delays before the mouse comes out of
hiding.

	sprints (2-tuple) – Minimum and maximum number of sprints the mouse will make
before hiding.

	sprint_range (2-tuple) – Minimum and maximum distances of a sprint.

	life_range (2-tuple) – Minimum and maximum number of sprint sessions the mouse
will engage in before dying (if released by Eric).










	
execute()

	Control a mouse. The pattern of movements of a mouse is as follows:



	Sprint up and down a few times.

	Hide for a bit.

	Go to 1, or die.










	Returns:	None.










	
is_interruptible()

	Return whether this command is interruptible.





	Returns:	False (mice do not care about the bell).














	
class pyskool.ai.MovePellet

	Command that controls a catapult pellet.


	
execute()

	Move a catapult pellet if it’s currently airborne, remove it from
sight if it’s reached the end of its flight, or else do nothing. If the
pellet is airborne and hits a wall, door, window, shield, cup, conker
or head, appropriate action is taken.





	Returns:	None.










	
is_interruptible()

	Return whether this command is interruptible.





	Returns:	False (a catapult pellet should not be stopped by the
bell).














	
class pyskool.ai.MoveWater

	Command that controls a stream of liquid (water or sherry) fired from a
water pistol.


	
execute()

	Move a stream of water or sherry one phase further in its
trajectory. If the liquid hits a cup, a plant or the floor on its
journey, appropriate action is taken.





	Returns:	None.










	
is_interruptible()

	Return whether this command is interruptible.





	Returns:	False (flying liquids are unstoppable).














	
class pyskool.ai.OpenDoor(barrier_id)

	Command that makes a character open a door or window.





	Parameters:	barrier_id – The ID of the door or window.










	
class pyskool.ai.Pause

	Command used to occupy a character while they are responding to an
attempted kiss from Eric.


	
execute()

	Occupy a character while they are responding to an attempted kiss
from Eric. The character’s animation is controlled by the Kiss
command while this command is in effect.





	Returns:	self if the character has finished responding to the kiss,
or None if they are still occupied.














	
class pyskool.ai.ReleaseMice

	Command that makes Eric release some mice.


	
get_commands()

	Return the list of steps (methods) to execute for this complex
command. The steps are:


	release_mice()

	stand_up()








	
release_mice()

	Make Eric release some mice.





	Returns:	None.










	
stand_up()

	Make Eric stand up straight after bending over to release some mice.





	Returns:	self.














	
class pyskool.ai.Restart

	Command that restarts a character’s command list.


	
execute()

	Restart a character’s command list.





	Returns:	self














	
class pyskool.ai.RideBike(bike)

	Command that controls Eric while he’s on a bike.





	Parameters:	bike – The bike Eric’s riding.






	
execute()

	Control Eric while he’s on a bike. Keep the bike moving if Eric
pedals, or carry Eric along with the bike if he’s standing on the
saddle.





	Returns:	self if Eric has dismounted; a JumpOffSaddle
command if Eric jumped while standing on the saddle; a
Flight command if Eric hit the skool gate while
standing on the saddle; a FallToFloor command if the
bike ran out of momentum; or None otherwise.














	
class pyskool.ai.Say(words, notify=False)

	Command that makes a character say something.





	Parameters:	
	words – The words to say.

	notify – True if the character who is listening should be notified
(as during a question-and-answer session between a teacher
and the swot), False otherwise.










	
execute()

	Make a character utter the next bit of whatever he’s saying. If the
character has finished speaking, his speech bubble is removed, and any
listeners are notified.





	Returns:	self if the character has finished speaking, None
otherwise.










	
finish()

	Remove the character’s speech bubble. This method is called if the
command is removed from the command stack before exiting normally.










	
class pyskool.ai.SetClock(ticks)

	Command that makes a character set the skool clock to a specified time.





	Parameters:	ticks (number) – The time to set the clock to (remaining ticks till the bell
rings).






	
execute()

	Make a character set the skool clock.





	Returns:	self.














	
class pyskool.ai.SetControllingCommand(command_name, *params)

	Command that sets a controlling command on a character’s command list.
See CommandList.set_controlling_command() for more details.





	Parameters:	
	command_name – The name of the controlling command.

	params – The controlling command’s initialisation parameters.










	
execute()

	Set the controlling command on a character’s command list.





	Returns:	self.














	
class pyskool.ai.SetRestartPoint

	Command that makes the next command in a character’s command list be
regarded as the first (for the purposes of a restart).


	
execute()

	Make the next command in a character’s command list be regarded as
the first (for the purposes of a restart).





	Returns:	self.














	
class pyskool.ai.SetSubcommand(command_name, *args)

	Command that sets a subcommand on a character’s command list. See
CommandList.set_controlling_command() for more details.





	Parameters:	
	command_name – The name of the subcommand.

	args – The subcommand’s parameters.










	
execute()

	Set a subcommand on a character’s command list.





	Returns:	self.














	
class pyskool.ai.ShadowEric

	Command that makes a character run after Eric and then hover around him
until the bell rings.


	
execute()

	Make a character take the next step in the search for Eric, or
remain by his side.





	Returns:	A GoTowardsXY command if the character hasn’t found
Eric yet, or None if the character is already by Eric’s
side.














	
class pyskool.ai.ShutDoor(barrier_id)

	Command that makes a character close a door or window.





	Parameters:	barrier_id – The ID of the door or window.










	
class pyskool.ai.Signal(signal)

	Command that makes a character raise a signal.





	Parameters:	signal – The signal to raise.






	
execute()

	Make a character raise a signal.





	Returns:	self.














	
class pyskool.ai.SitForAssembly(assembly_finished, sit_direction, sit_range=(1, 4))

	Command that makes a character find a spot to sit down during assembly,
and keeps him seated until assembly has finished.





	Parameters:	
	assembly_finished – The signal that indicates assembly is finished.

	sit_direction – The direction to face when sitting down.

	sit_range – The minimum and maximum distances the character should
walk back to find a spot to sit.










	
find_spot_to_sit()

	Make a character find a spot to sit during assembly. If assembly has
already finished, the command is terminated.





	Returns:	self if assembly has finished, or a GoToXY command
to send the character to a place to sit down.










	
get_commands()

	Return the list of steps (methods) to execute for this complex
command. The steps are:


	find_spot_to_sit()

	sit_down()

	get_up()

	done()








	
get_up()

	Make a character get up if assembly has finished. If assembly has
not finished yet, return here next time.





	Returns:	False if assembly is still in progress, or None if the
character got up off the floor.










	
sit_down()

	Make a character sit down for assembly, or turn round to face the
right way for assembly. If assembly has already finished, the command
is terminated.





	Returns:	self if assembly has finished, False if the character
was turned round, or None if the character sat down.














	
class pyskool.ai.SitStill

	Command that makes a character do nothing. It is used to make a
character sit still during a lesson.


	
execute()

	Make a character do nothing.





	Returns:	None.














	
class pyskool.ai.StalkAndHit(character_id)

	Command that makes a character seek out another character while throwing
occasional punches. This command is used as a controlling command (see
CommandList.set_controlling_command()).





	Parameters:	character_id – The ID of the character to stalk.






	
execute()

	Make a character proceed one step further towards whoever he’s
stalking, and consider throwing a punch while he’s at it.





	Returns:	A HitNowAndThen command.














	
class pyskool.ai.StartAssemblyIfReady(signal)

	Command that restarts a character’s command list unless it’s time to
start assembly.





	Parameters:	signal – The signal to raise to indicate that assembly has started.






	
execute()

	Restart a character’s command list unless it’s time to start
assembly.





	Returns:	self if it’s time to start assembly, None otherwise.














	
class pyskool.ai.StartDinnerIfReady

	Command that makes a character start dinner if the time has come, or
restarts the character’s command list if it’s still too early. It is used
by teachers on dinner duty.


	
execute()

	Make a character start dinner, or restart his command list if it’s
too early to start dinner.





	Returns:	self














	
class pyskool.ai.StartLessonIfReady(signal)

	Command that makes a character start a lesson if the time has come, or
restarts the character’s command list if it’s still too early.





	Parameters:	signal – The signal to raise when starting the lesson.






	
execute()

	Make a character start a lesson, or restart his command list if it’s
too early to start the lesson. If it’s time to start the lesson, the
character has a special safe secret question, and he can see the answer
on a nearby blackboard, he will reveal his safe secret.





	Returns:	A TellKidsToSitDown command if it’s time to start the
lesson, self otherwise.














	
class pyskool.ai.Stink(delay)

	Command that controls a stinkbomb cloud.





	Parameters:	delay – The delay before the stinkbomb disappears.






	
execute()

	Animate a stinkbomb cloud (if it’s visible).





	Returns:	None.














	
class pyskool.ai.StopEric(alertee_id, command_list_id, alert_message, escape_x, danger_zone)

	Command that makes a character try to stop Eric escaping from skool, and
alert whoever should be alerted.





	Parameters:	
	alertee_id – The ID of the character to alert.

	command_list_id – The ID of the command list the alerted character
should use.

	alert_message – The alert message to scream.

	escape_x – The x-coordinate beyond which Eric should be regarded as
trying to escape.

	danger_zone – The minimum and maximum distance to the left of the
watcher that Eric must be for him to raise the alarm.










	
execute()

	Make a character raise the alarm (if he hasn’t already) that Eric is
trying to escape, and continue trying to stop Eric if need be.





	Returns:	self if the character has deemed it no longer necessary to
try and stop Eric escaping, or None otherwise.














	
class pyskool.ai.TellClassWhatToDo

	Command that makes a character tell a class what to do. It is used by
teachers.


	
execute()

	Make a character tell the class what to do.





	Returns:	A Say command, or self if the character has
finished telling the class what to do.














	
class pyskool.ai.TellEric(message)

	Command that makes a character say something to Eric.





	Parameters:	message – The message to give to Eric.






	
execute()

	Make a character say something to Eric. When the character has
finished speaking, Eric will be unfrozen.





	Returns:	self if the character has finished speaking, or a
Say command.














	
class pyskool.ai.TellEricAndWait(message)

	Command that makes a character say something to Eric, and wait for a
response.





	Parameters:	message – The message to give to Eric.






	
execute()

	Make a character say something to Eric, and then wait for a
response. When Eric has responded, he will be unfrozen. If Eric does
not respond within a certain period, the character will repeat the
message and wait again.





	Returns:	self if Eric has responded, None if the character is
waiting for Eric to respond, or a Say command.














	
class pyskool.ai.TellKidsToSitDown

	Command that makes a character tell the kids to sit down.


	
execute()

	Make a character tell the kids to sit down.





	Returns:	A Say command, or self if the character has
finished telling the kids to sit down.














	
class pyskool.ai.TripPeopleUp

	Command that makes a character trip people up while running towards his
destination. This command is used as a controlling command (see
CommandList.set_controlling_command()).


	
execute()

	Make a character start or continue running, and trip up anyone in
his path.





	Returns:	self.














	
class pyskool.ai.Unsignal(signal)

	Command that makes a character lower a signal.





	Parameters:	signal – The signal to lower.






	
execute()

	Make a character lower a signal.





	Returns:	self.














	
class pyskool.ai.WaitAtDoor(door_id)

	Command that makes a character wait at a door until everyone is on the
correct side of it (that is, boys on the boys’ side, girls on the girls’
side).





	Parameters:	door_id – The ID of the door to wait at.






	
execute()

	Make a character wait at a door until everyone is on the correct
side of it.





	Returns:	self if everyone is on the correct side of the door,
None otherwise.














	
class pyskool.ai.WaitUntil(signal)

	Command that makes a character wait until a signal is raised.





	Parameters:	signal – The signal to wait for.






	
execute()

	Make a character wait for a signal.





	Returns:	self if the signal has been raised, None otherwise.














	
class pyskool.ai.WalkAround(walkabouts, walkabout_range=(1, 7))

	Command that makes a character walk up and down a given number of times.





	Parameters:	
	walkabouts – The number of times to walk up and down.

	walkabout_range – The minimum and maximum distances to walk away from
the walkabout origin.










	
execute()

	Make a character walk up (away from the walkabout origin) or down
(back to the walkabout origin). If the character is on a staircase,
make him finish going up or down it first.





	Returns:	self if the designated number of walkabouts has been
performed, None if the character is on a staircase, or
a GoToXY command.














	
class pyskool.ai.WalkFast

	Command that makes a character walk fast (as kids do half the time, and
teachers do when chasing Eric). This command is used as a controlling
command (see CommandList.set_controlling_command()).


	
execute()

	Ensure that a character starts or continues to walk fast.





	Returns:	self.










	
finish()

	Trigger a speed change for the character so that he no longer runs
continuously.










	
class pyskool.ai.WalkUpOrDown

	Command that makes a character walk up (away from an origin) or down
(back to the origin).


	
execute()

	Make a character walk up or down.





	Returns:	A GoToXY command, or self if the character is ready
to turn round.














	
class pyskool.ai.WatchForEric(alertee_id, command_list_id, alert_message, escape_x, danger_zone)

	Command that makes a character keep an eye out for Eric, and alert
someone if they spot him trying to escape from skool. This command is used
as a controlling command (see CommandList.set_controlling_command()).





	Parameters:	
	alertee_id – The ID of the character to alert.

	command_list_id – The ID of the command list the alerted character
should use.

	alert_message – The message to scream if Eric is spotted trying to
escape.

	escape_x – The x-coordinate beyond which Eric should be regarded as
trying to escape.

	danger_zone – The minimum and maximum distance to the left of the
watcher that Eric must be for him to raise the alarm.










	
execute()

	Make a character check whether Eric is trying to escape from skool,
and take appropriate action if he is.





	Returns:	A StopEric command if Eric is spotted trying to
escape, or self otherwise.














	
class pyskool.ai.WipeBoard

	Command that makes a character wipe a blackboard.


	
get_commands()

	Return the list of steps (methods) to execute for this complex
command. The steps are:


	walk()

	wipe()

	lower_arm()

	done()








	
is_interruptible()

	Return whether this command is interruptible.





	Returns:	False (blackboards should never be left partially wiped).










	
lower_arm()

	Make a character lower his arm after wiping a bit of a blackboard.
If there are any bits of the blackboard left to wipe, the command is
restarted.





	Returns:	None.










	
walk()

	Make a character walk to the next part of the blackboard that needs
wiping. If the character hasn’t started wiping yet, he is sent to the
nearest edge of the blackboard.





	Returns:	A GoToXY command to send the character to the
appropriate location.










	
wipe()

	Make a character raise his arm and wipe a bit of a blackboard.





	Returns:	None.














	
class pyskool.ai.Write

	Command that controls Eric while he’s writing on a blackboard.


	
execute()

	Control Eric while he’s writing on a blackboard.





	Returns:	self if Eric has finished writing on the blackboard,
None otherwise.














	
class pyskool.ai.WriteOnBoard(message)

	Command that makes a character write on a blackboard.





	Parameters:	message – The message to write on the blackboard.






	
execute()

	Make a character write the next letter of the message on a
blackboard. The character’s arm will be alternately raised or lowered
while writing.





	Returns:	self if the character has finished writing, None
otherwise.










	
is_interruptible()

	Return whether this command is interruptible.





	Returns:	False (a blackboard should not be left half-written on)














	
class pyskool.ai.WriteOnBoardUnless(signal)

	Command that makes a character write on a blackboard unless a specified
signal has been raised.





	Parameters:	signal – The signal to check before writing on the blackboard.






	
execute()

	Make a character write on a blackboard unless a signal has been
raised.





	Returns:	self if the signal has been raised, or the blackboard is
dirty, or the character has finished writing on the
blackboard; a WriteOnBoard command otherwise.














	
pyskool.ai.get_command_class(command_name)

	Return the class object for a given command.





	Parameters:	command_name – The name of the command.













          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
animal





          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
animatorystates

The animatory state IDs recognised by Pyskool. They are used in the
[SpriteGroup ...] sections of the ini file.


	
pyskool.animatorystates.ARM_UP = 'ARM_UP'

	Character with arm raised (as if writing on a blackboard or opening a door).






	
pyskool.animatorystates.BENDING_OVER = 'BENDING_OVER'

	Character bending over (as if to catch a mouse).






	
pyskool.animatorystates.BIKE_ON_FLOOR = 'BIKE_ON_FLOOR'

	The bike lying on the floor.






	
pyskool.animatorystates.BIKE_UPRIGHT = 'BIKE_UPRIGHT'

	The bike upright.






	
pyskool.animatorystates.CATAPULT0 = 'CATAPULT0'

	Character firing a catapult (phase 1).






	
pyskool.animatorystates.CATAPULT1 = 'CATAPULT1'

	Character firing a catapult (phase 2).






	
pyskool.animatorystates.CONKER = 'CONKER'

	Conker.






	
pyskool.animatorystates.DESK_EMPTY = 'DESK_EMPTY'

	Desk lid and empty desk.






	
pyskool.animatorystates.DESK_STINKBOMBS = 'DESK_STINKBOMBS'

	Desk lid and stinkbombs.






	
pyskool.animatorystates.DESK_WATER_PISTOL = 'DESK_WATER_PISTOL'

	Desk lid and water pistol.






	
pyskool.animatorystates.FLY = 'FLY'

	Catapult pellet.






	
pyskool.animatorystates.HITTING0 = 'HITTING0'

	Character throwing a punch (phase 1).






	
pyskool.animatorystates.HITTING1 = 'HITTING1'

	Character throwing a punch (phase 2).






	
pyskool.animatorystates.HOP1 = 'HOP1'

	Frog hopping (phase 1).






	
pyskool.animatorystates.HOP2 = 'HOP2'

	Frog hopping (phase 2).






	
pyskool.animatorystates.KISSING_ERIC = 'KISSING_ERIC'

	Character kissing Eric.






	
pyskool.animatorystates.KNOCKED_OUT = 'KNOCKED_OUT'

	Character lying on back (as if knocked out).






	
pyskool.animatorystates.KNOCKED_OVER = 'KNOCKED_OVER'

	Character sitting on the floor (as when hit by a catapult pellet).






	
pyskool.animatorystates.PLANT_GROWING = 'PLANT_GROWING'

	Plant half-grown.






	
pyskool.animatorystates.PLANT_GROWN = 'PLANT_GROWN'

	Plant fully grown.






	
pyskool.animatorystates.RIDING_BIKE0 = 'RIDING_BIKE0'

	Character riding a bike (phase 1).






	
pyskool.animatorystates.RIDING_BIKE1 = 'RIDING_BIKE1'

	Character riding a bike (phase 2).






	
pyskool.animatorystates.RUN = 'RUN'

	Mouse running.






	
pyskool.animatorystates.SHERRY_DROP = 'SHERRY_DROP'

	Drop of sherry (spilt from a cup).






	
pyskool.animatorystates.SIT = 'SIT'

	Frog sitting still.






	
pyskool.animatorystates.SITTING_ON_CHAIR = 'SITTING_ON_CHAIR'

	Character sitting on a chair.






	
pyskool.animatorystates.SITTING_ON_FLOOR = 'SITTING_ON_FLOOR'

	Character sitting on the floor (as for assembly).






	
pyskool.animatorystates.STINKBOMB = 'STINKBOMB'

	Stinkbomb cloud.






	
pyskool.animatorystates.WALK0 = 'WALK0'

	Character standing/walking (phase 1).






	
pyskool.animatorystates.WALK1 = 'WALK1'

	Character standing/walking (phase 2).






	
pyskool.animatorystates.WALK2 = 'WALK2'

	Character standing/walking (phase 3).






	
pyskool.animatorystates.WALK3 = 'WALK3'

	Character standing/walking (phase 4).






	
pyskool.animatorystates.WATER0 = 'WATER0'

	Water fired from a water pistol (phase 1).






	
pyskool.animatorystates.WATER1 = 'WATER1'

	Water fired from a water pistol (phase 2).






	
pyskool.animatorystates.WATER2 = 'WATER2'

	Water fired from a water pistol (phase 3).






	
pyskool.animatorystates.WATER3 = 'WATER3'

	Water fired from a water pistol (phase 4).






	
pyskool.animatorystates.WATER4 = 'WATER4'

	Water fired from a water pistol (phase 5+).






	
pyskool.animatorystates.WATERPISTOL = 'WATERPISTOL'

	Character firing a water pistol.






	
pyskool.animatorystates.WATER_DROP = 'WATER_DROP'

	Drop of water (spilt from a cup).









          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
barrier

Classes representing the parts of the skool that cause obstructions, namely
walls, windows and doors.


	
class pyskool.barrier.Barrier(barrier_id, x, bottom_y, top_y, climb_phases=(), fly_phases=())

	Abstract superclass of all obstructions.





	Parameters:	
	barrier_id – The ID of the barrier.

	x – The x-coordinate of the barrier.

	bottom_y – The y-coordinate of the bottom of the barrier.

	top_y – The y-coordinate of the top of the barrier.










	
impedes(character, distance=0, force_shut=False)

	Return whether a character is impeded by this barrier.





	Parameters:	
	character (Character) – The character to check.

	distance – The maximum distance in front of the character at
which the barrier should be considered an obstruction.

	force_shut – If True, the barrier will be considered an
obstruction even if it’s open; otherwise it will be
considered an obstruction only when closed.














	
is_door()

	Return whether the barrier is a door (or window). Subclasses
override this method as appropriate.





	Returns:	False.










	
is_shut()

	Return whether the barrier is shut. Subclasses override this method
as appropriate.





	Returns:	True.














	
class pyskool.barrier.Door(door_id, x, bottom_y, top_y, shut, auto_shut_delay, climb_phases, fly_phases=())

	A door that may be opened and closed.





	Parameters:	
	door_id – The ID of the door.

	x – The x-coordinate of the door.

	bottom_y – The y-coordinate of the bottom of the door.

	top_y – The y-coordinate of the top of the door.

	shut – Whether the door is shut at the start of the game.

	auto_shut_delay – The delay before the door shuts automatically; if
zero or negative, the door will not shut
automatically.

	climb_phases – The sequence of animation phases to use for Eric if he
climbs over the door when it’s shut.

	fly_phases – The sequence of animation phases to use for Eric if he
he flies over the door after hitting it while standing
on the saddle of the bike.










	
auto_shut()

	Return whether this door should automatically shut now.






	
build_images()

	Build the images for the barrier. This method is called after
rescaling the screen or loading a saved game.






	
get_images()

	Return a 2-tuple containing a list of images of the current state of
the door, and the coordinates at which to draw the door.






	
is_door()

	Return whether this is a door.





	Returns:	True.










	
is_shut()

	Return whether the door is shut.






	
move(shut)

	Open or close the door.





	Parameters:	shut – If True, close the door; otherwise open it.


	Returns:	A 2-tuple containing a list of images of the current state of
the door, and the coordinates at which to draw the door.










	
set_images(open_images, shut_images, top_left)

	Define the images to use for the door when open or closed.





	Parameters:	
	open_images – A list of the images to use when the door is open.

	shut_images – A list of the images to use when the door is
closed.

	top_left – The coordinates at which to draw the image of the
door.


















	
class pyskool.barrier.Wall(barrier_id, x, bottom_y, top_y, climb_phases=(), fly_phases=())

	A wall in the skool.


	
separates(a, b)

	Return whether this wall blocks the view from one location to
another.





	Parameters:	
	a (Location) – The first location.

	b (Location) – The other location.


















	
class pyskool.barrier.Window(window_id, x, bottom_y, top_y, shut, opener_coords, phases, not_a_bird)

	A window that may be opened and closed.





	Parameters:	
	window_id – The ID of the window.

	x – The x-coordinate of the window.

	bottom_y – The y-coordinate of the bottom of the window.

	top_y – The y-coordinate of the top of the window.

	shut – Whether the window is shut at the start of the game.

	opener_coords – Where a character should stand to open or close the
window.

	phases – The animation phases to use for Eric if he jumps out of the
window.

	not_a_bird – The ID of the command list Mr Wacker should switch to
when Eric hits the ground after jumping out of the
window; if not blank, Eric will be paralysed when he
hits the ground.

















          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
bike





          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
cast





          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
character





          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
debug

Used for debugging Pyskool.


	
pyskool.debug.error(text)

	Print text (an error message) on stderr.






	
pyskool.debug.log(text)

	Print text (a debug message) on stderr.









          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
desklid





          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
droppable





          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
eric





          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
floor

Defines the Floor class.


	
class pyskool.floor.Floor(floor_id, left_x, right_x, y)

	A region of the skool regarded as a starting point from which to reach a
destination (which will be on the same or another floor).





	Parameters:	
	floor_id – The floor’s unique ID.

	left_x – The x-coordinate of the left edge of the floor.

	right_x – The x-coordinate of the right edge of the floor.

	y – The y-coordinate of the floor.










	
below(character)

	Return whether this floor is below a character’s current location.





	Parameters:	character (Character) – The character to check.










	
contains_location(x, y)

	Return whether the location (x, y) is on this floor.






	
supports(character)

	Return whether a character is on this floor.





	Parameters:	character (Character) – The character to check.

















          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
game





          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
graphics





          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
iniparser

Parse a single ini file, or a directory of ini files.


	
class pyskool.iniparser.IniParser(path, verbose=True)

	Parses one or more ini files.





	Parameters:	
	path – An ini file, or a directory to scan for ini files.

	verbose – Whether to print status information while reading files.










	
get_config(pattern)

	Return a dictionary of keys and values from every section whose name
matches pattern.






	
parse_section(name, parse_numbers=True, num_elements=None, split=True, separator=', ')

	Extract the elements from every line in a section. The return value
is a list of lists of elements from each line (if split is True),
or a list of the lines. If the named section does not exist, an empty
list is returned.





	Parameters:	
	name – The name of the section.

	parse_numbers – If True, any numeric element is converted to a
number; otherwise it is left as a string.

	num_elements – The minimum number of elements to return for each
line in the section. If any line has fewer
elements than this, the list of elements is padded
out with None instances.

	split – If True, each line is split on commas; otherwise, the
line is returned whole.

	separator – The character sequence that separates the elements in
a line.





















          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
input





          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
items

IDs of the items that can be displayed in Eric’s inventory. The image
specifications for each item are defined in the [Inventory] section of the
ini file.


	
pyskool.items.FROG = 'FROG'

	Captured frog.






	
pyskool.items.MOUSE = 'MOUSE'

	Captured mouse.






	
pyskool.items.SAFE_KEY = 'SAFE_KEY'

	Safe key.






	
pyskool.items.SHERRY_PISTOL = 'SHERRY_PISTOL'

	Water pistol containing sherry.






	
pyskool.items.STINKBOMBS1 = 'STINKBOMBS1'

	One stinkbomb.






	
pyskool.items.STINKBOMBS2 = 'STINKBOMBS2'

	Two stinkbombs.






	
pyskool.items.STINKBOMBS3 = 'STINKBOMBS3'

	Three stinkbombs.






	
pyskool.items.STOREROOM_KEY = 'STOREROOM_KEY'

	Science Lab storeroom key.






	
pyskool.items.WATER_PISTOL = 'WATER_PISTOL'

	Water pistol containing water.









          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
keys





          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
lesson

Classes concerned with controlling what goes on during a lesson.


	
class pyskool.lesson.AssemblyMessageGenerator

	Generates messages to be delivered by whoever is conducting assembly.
There is only one assembly message generator, shared by the whole skool.


	
add_message_template(template)

	Add template to the generator’s collection of message templates.






	
add_word(group_id, word)

	Add a word to the generator’s collection.





	Parameters:	
	group_id – The name of the group to add the word to.

	word – The word.














	
generate_message()

	Return a message based on a randomly chosen template and containing
randomly chosen phrases.










	
class pyskool.lesson.Lesson(cast, swot, room, config)

	Controls the interaction between the teacher, the swot and Eric during a
lesson. The various actions required by the teacher and the swot during a
lesson - such as grassing on Eric for being absent, writing on the board,
and asking and answering questions - are defined by individual methods on
this class.

A new lesson is created by the swot when he sits down after being told to
by the teacher at the classroom doorway.





	Parameters:	
	cast (Cast) – The cast.

	swot (Character) – The swot.

	room (Room) – The classroom in which the lesson is taking place.

	config (dict) – Configuration parameters from the ini file.










	
answer_question()

	Make the swot answer the teacher’s question. The swot’s next action
will be check_eric().






	
ask_question()

	Make the teacher ask a question. The swot’s next action is set to
answer_question().





	Returns:	A Say command.










	
check_eric()

	Make the swot tell the teacher that Eric is absent (if he is). If
Eric is absent, the teacher’s next action will be fetch_eric().





	Returns:	A Say command if Eric is absent, otherwise None.










	
check_eric_initial()

	Make the swot tell the teacher that Eric is absent (if he is). This
method defines the swot’s first action during a lesson. If Eric is
absent, the teacher’s next action will be fetch_eric(). The
swot’s next action is set to grass_for_hitting().





	Returns:	A Say command if Eric is absent, otherwise None.










	
fetch_eric()

	Make the teacher track down Eric if he is absent. The teacher may
first give lines to the swot for telling tales. If Eric is present by
the time this method is called (after the swot has finished telling the
teacher that Eric is not in class), the teacher will give lines to Eric
for being late (or for leaving early).





	Returns:	A FetchEric command if Eric is still absent after the swot
has finished speaking, otherwise None.










	
finished_speaking()

	Indicate that the current actor (teacher or swot) has finished
speaking.






	
get_question()

	Return the next question for the teacher to ask in a
question-and-answer session with the swot.






	
give_lines(victim_id, message_id)

	Make the teacher give lines to the swot for telling a tale, or give
lines to the subject of the swot’s tale.





	Parameters:	
	victim_id – The ID of the subject (may be None, in which case
no lines will be given).

	message_id – The ID of the lines message.














	
give_lines_for_hitting()

	Make the teacher give lines to the swot for telling a tale about
being hit, or give lines to the subject of the tale. If the swot has
not told such a tale, nothing happens.






	
give_lines_for_writing()

	Make the teacher give lines to the swot for telling a tale about the
blackboard being written on, or give lines to the subject of the tale.
If the swot has not told such a tale, nothing happens. The teacher’s
next action is set to wipe_board().






	
grass_for_hitting()

	Make the swot tell a tale about someone hitting him (possibly). This
method defines the swot’s second action during a lesson. The teacher’s
next action is set to give_lines_for_hitting(). The swot’s next
action is set to grass_for_writing().





	Returns:	A Say command, or None if the swot decides not
to tell a tale.










	
grass_for_writing()

	Make the swot tell a tale about someone writing on the blackboard
(if it was written on by Eric or the tearaway). This method defines the
swot’s third action during a lesson. The teacher’s next action is set
to give_lines_for_writing().





	Returns:	A Say command, or None if the swot decides not to tell a
tale.










	
is_eric_absent()

	Return whether Eric is absent from the classroom in which this
lesson is taking place.






	
join(teacher, qa_generator, qa_group)

	Make a teacher join the lesson. This method is called by the teacher
when he notices that the swot has sat down.





	Parameters:	
	teacher (Character) – The teacher.

	qa_generator (QAGenerator) – The question-and-answer generator to use.

	qa_group – The Q&A group from which to choose questions and
answers for the teacher and the swot; if None, the
Q&A group will be chosen at random from those
available each time a question and answer is
generated.














	
next_swot_action()

	Complete any actions required of the swot, and return the next
command to be executed by him, or None if it’s not his turn to act.






	
next_teacher_action()

	Complete any actions required of the teacher, and return the next
command to be executed by him, or None if it’s not his turn to act.






	
return_to_base()

	Make the teacher return to the classroom after fetching Eric. The
teacher’s next action will be ask_question() (if a
question-and-answer session was interrupted) or
walk_up_or_down().





	Returns:	A GoToXY command.










	
switch(action=None)

	Switch turns between the actors in this lesson (the teacher and the
swot).





	Parameters:	action – The next action (method to execute) for the next actor;
if None, the next action (which may have already been
set) is unchanged.










	
tell_class_what_to_do()

	Make the teacher tell the class what to do (as opposed to starting a
question-and-answer session with the swot). The teacher’s next action
(and base action for the remainder of the lesson) will be
walk_up_or_down().





	Returns:	A TellClassWhatToDo command.










	
walk_to_board()

	Make the teacher walk to the middle of the blackboard (after having
wiped it). The teacher’s next action will be write_on_board().





	Returns:	A GoToXY command.










	
walk_up_or_down()

	Make the teacher walk up or down in front of the blackboard. This
action is used during a lesson with no question-and-answer session.
The swot’s next action is set to check_eric().





	Returns:	A WalkUpOrDown command.










	
wipe_board()

	Make the teacher wipe the board (if there is one). The teacher’s
next action will be walk_to_board().





	Returns:	A WipeBoard command if there is a blackboard, None
otherwise.










	
write_on_board()

	Make the teacher write on the blackboard (possibly). The teacher’s
next action will be the base action for this lesson (either
tell_class_what_to_do() or ask_question()).





	Returns:	A WriteOnBoard command if the teacher chooses to write,
otherwise None.














	
class pyskool.lesson.QAGenerator

	Generates questions and answers for the teacher and swot to use during a
lesson. Every teacher gets his own generator to keep; it is built before
the game starts.


	
add_answer(question_id, text)

	Add an answer to a question.





	Parameters:	
	question_id – The ID of the question.

	text – The text of the answer.














	
add_qa_pair(qa_group, word1, word2)

	Add a Q&A pair to a Q&A group.





	Parameters:	
	qa_group – The name of the Q&A group.

	word1 – The first word of the pair.

	word2 – The second word of the pair.














	
add_question(question_id, qa_group, text)

	Add a question to a Q&A group.





	Parameters:	
	question_id – The ID of the question.

	qa_group – The name of the Q&A group to add the question to.

	text – The text of the question.














	
has_special_question()

	Return whether the teacher has a special question. A special
question is one to which the answer must be seen written on a
blackboard by the teacher to make him reveal his safe combination
letter.






	
initialise_special_answer()

	Initialise the answer to the teacher’s special question (if there is
one). The special answer is chosen at random from the Q&A pairs in the
Q&A group of the special question.






	
prepare_qa(qa_group=None)

	Prepare a randomly chosen question and answer.





	Parameters:	qa_group – The Q&A group from which to choose the question and
answer; if None, the Q&A group will be chosen at
random from those available.


	Returns:	A 2-tuple containing the question and the answer.










	
prepare_special_qa()

	Prepare the teacher’s special question and answer (if any).





	Returns:	A 2-tuple containing the question and the answer.










	
set_special_group(qa_group, index)

	Set the Q&A group to use for the teacher’s special question (if
there is one).





	Parameters:	
	qa_group – The name of the Q&A group.

	index – The index (0 or 1) of the special answer in the Q&A pair.





















          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
lines

Lines message IDs recognised by Pyskool. The text of the lines messages
themselves are defined in the [LinesMessages] section of the ini file.


	
pyskool.lines.BACK_TO_SKOOL = 'BACK_TO_SKOOL'

	Eric should be back in the boys’ skool by now.






	
pyskool.lines.BE_PUNCTUAL = 'BE_PUNCTUAL'

	Eric showed up for class while the swot was grassing on him for being
absent.






	
pyskool.lines.COME_ALONG_PREFIX = 'COME_ALONG'

	Prefix for the lines message IDs used when Eric’s teacher is fetching him.






	
pyskool.lines.GET_ALONG = 'GET_ALONG'

	Eric should be in the dinner hall, assembly hall, or a particular classroom
by now.






	
pyskool.lines.GET_OFF_PLANT = 'GET_OFF_PLANT'

	Eric is standing on a plant.






	
pyskool.lines.GET_OUT = 'GET_OUT'

	Eric is somewhere he should never be (such as the head’s study).






	
pyskool.lines.GET_UP = 'GET_UP'

	Eric is sitting or lying on the floor.






	
pyskool.lines.NEVER_AGAIN = 'NEVER_AGAIN'

	Somebody knocked a teacher over.






	
pyskool.lines.NO_BIKES = 'NO_BIKES'

	Eric is riding the bike inside the boys’ skool.






	
pyskool.lines.NO_CATAPULTS = 'NO_CATAPULTS'

	Eric is firing his catapult.






	
pyskool.lines.NO_HITTING = 'NO_HITTING'

	Eric is throwing a punch.






	
pyskool.lines.NO_JUMPING = 'NO_JUMPING'

	Eric is jumping.






	
pyskool.lines.NO_SITTING_ON_STAIRS = 'NO_SITTING_ON_STAIRS'

	Eric is sitting on the stairs.






	
pyskool.lines.NO_STINKBOMBS = 'NO_STINKBOMBS'

	Eric dropped a stinkbomb.






	
pyskool.lines.NO_TALES = 'NO_TALES'

	The swot told a tale.






	
pyskool.lines.NO_WATERPISTOLS = 'NO_WATERPISTOLS'

	Eric is firing a water pistol.






	
pyskool.lines.NO_WRITING = 'NO_WRITING'

	Eric is writing on a blackboard.






	
pyskool.lines.SIT_DOWN = 'SIT_DOWN'

	Eric is standing up in class when he should be sitting down.






	
pyskool.lines.SIT_FACING_STAGE = 'SIT_FACING_STAGE'

	Eric is sitting down facing the wrong way in assembly.






	
pyskool.lines.STAY_IN_CLASS = 'STAY_IN_CLASS'

	Eric left the classroom and then returned while the swot was grassing on him
for being absent.









          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
location

Defines the Location class.


	
class pyskool.location.Location(coords)

	A location in the skool specified by a pair of coordinates.





	Parameters:	coords – The coordinates of this location.






	
coords()

	Return the coordinates of this location as a 2-tuple.













          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
mutable

Classes for things in the skool that change appearance depending on their
state. For example, a cup that may be empty or contain water or sherry.


	
class pyskool.mutable.Bike(x, y)

	Represents the portion of the tree that may or may not have a bike
chained to it.





	Parameters:	
	x – The x-coordinate of the bike-on-a-tree image.

	y – The y-coordinate of the bike-on-a-tree image.










	
build_images()

	Build the images for the bike. This method is called after rescaling
the screen or loading a saved game.






	
chain()

	Return a 2-tuple containing a list of the images to use when the
bike is chained to the tree, and the coordinates of the images.






	
get_images()

	Return a 2-tuple containing a list of images of the current state of
the bike, and the coordinates at which to draw the bike.






	
set_images(unchained_images, chained_images)

	Define the images to use for the bike-on-a-tree.





	Parameters:	
	unchained_images – A list of images to use when the bike is not
chained to the tree.

	chained_images – A list of images to use when the bike is chained
to the tree.














	
unchain()

	Return a 3-tuple containing a list of the images to use when the
bike is not chained to the tree, and the coordinates of the images.










	
class pyskool.mutable.Cup(cup_id, coords, water_id, sherry_id)

	A cup that may be empty or filled with water or sherry.





	Parameters:	
	cup_id – The ID of the cup.

	coords – The coordinates of the cup.

	water_id – The ID of the liquid for which the water-filled image
should be used.

	sherry_id – The ID of the liquid for which the sherry-filled image
should be used.










	
build_images()

	Build the images for the cup. This method is called after rescaling
the screen or loading a saved game.






	
fill(contents)

	Fill the cup with a liquid, or empty it.





	Parameters:	contents – The liquid to fill the cup with, or None to empty
it.


	Returns:	The images for and location of the cup.










	
get_images()

	Return a 2-tuple containing a list of images of the current state of
the cup, and the coordinates at which to draw the cup.






	
insert_frog(frog)

	Insert a frog into the cup.





	Parameters:	frog (Frog) – The frog.










	
is_empty()

	Return whether the cup is empty (contains no liquid or frogs).






	
remove_frog(frog)

	Remove a frog from the cup.





	Parameters:	frog (Frog) – The frog.










	
set_images(empty_images, water_images, sherry_images)

	Define the images to use for the cup.





	Parameters:	
	empty_images – A list of images of the cup when empty.

	water_images – A list of images of the cup when filled with
water.

	sherry_images – A list of images of the cup when filled with
sherry.


















	
class pyskool.mutable.Flashable(x, y, images, inverse_images, score=0)

	Abstract superclass for objects that flash (shields and the safe).





	Parameters:	
	x – The x-coordinate of the object.

	y – The y-coordinate of the object.

	images – A list of normal images of the object.

	inverse_images – A list of inverse images of the object.

	score – The points awarded for hitting the object.










	
build_images()

	Build the images for this object. This method is called after
rescaling the screen or loading a saved game.






	
flash()

	Mark the object as flashing.






	
get_images(inverse)

	Return a 2-tuple containing a list of images of the object, and the
coordinates at which it should be drawn.





	Parameters:	inverse – If True, return the inverse images; otherwise return
the normal images.










	
unflash()

	Mark the object as not flashing.










	
class pyskool.mutable.Safe(x, y, images, inverse_images, score=0)

	A safe that will flash or unflash when hit.






	
class pyskool.mutable.Shield(x, y, images, inverse_images, score=0)

	A shield that will flash or unflash when hit.









          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
pellet





          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
plant





          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
room

Classes that represent the rooms in the skool and their furniture.


	
class pyskool.room.Blackboard(screen, top_left, size, chalk, skool_image)

	A blackboard in a classroom.





	Parameters:	
	screen (Screen) – The screen.

	top_left – The coordinates of the top-left of the blackboard.

	size – The size (width, height) of the blackboard.

	chalk – The chalk colour to use when writing on the blackboard.

	skool_image (Image) – An image of the skool.










	
beside(character)

	Return whether a character is standing beside the blackboard.





	Parameters:	character (Character) – The character to check.










	
build_images()

	Build the images for the blackboard. This method is called after
rescaling the screen or loading a saved game.






	
clear(blit=False)

	Mark this blackboard as clean.





	Parameters:	blit – If True, the blackboard surface will be blitted clean
too; otherwise it will be left alone.










	
is_dirty()

	Return whether anything is written on the blackboard.






	
newline()

	Start a new line on the blackboard.






	
restore()

	Restore the image of this blackboard. This method is used after
restoring a saved game.






	
shows(text, in_order=True)

	Return whether the blackboard displays all the characters in a given
piece of text.





	Parameters:	
	text – The text to look for.

	in_order – If True, return True only if the order of the
characters written on the board matches too.














	
wipe(column)

	Wipe a column of the blackboard clean.





	Parameters:	column – The column to wipe clean.










	
write(char)

	Write a character on the blackboard.





	Parameters:	char – The character to write.














	
class pyskool.room.Chair(room, x)

	A seat in a classroom.





	Parameters:	
	room (Room) – The room the chair is in.

	x – The x-coordinate of the chair.










	
seat(character)

	Mark the chair as being occupied by a character.





	Parameters:	character (Character) – The character sitting in the chair.










	
vacate()

	Mark this chair as vacant.










	
class pyskool.room.Desk(room, x)

	A desk (that can be opened) in a classroom.





	Parameters:	
	room (Room) – The room the desk is in.

	x – The x-coordinate of the desk.










	
empty()

	Mark the desk as empty.






	
insert(item)

	Insert an inventory item (water pistol or stinkbombs) into the desk.





	Parameters:	item – The ID of the item to insert.














	
class pyskool.room.NoGoZone(zone_id, min_x, max_x, bottom_y, top_y)

	A region of the skool in which Eric is never allowed to be.





	Parameters:	
	zone_id – The zone’s unique ID.

	min_x – The x-coordinate of the left edge of the zone.

	max_x – The x-coordinate of the right edge of the zone.

	bottom_y – The y-coordinate of the bottom edge of the zone.

	top_y – The y-coordinate of the top edge of the zone.










	
contains(x, y)

	Return whether a given location is inside the zone.





	Parameters:	
	x – The x-coordinate of the location.

	y – The y-coordinate of the location.


















	
class pyskool.room.Room(room_id, name, top_left, bottom_right, get_along)

	A classroom or some other region of the skool that Eric is expected to
show up in when the timetable demands it.





	Parameters:	
	room_id – The unique ID of the room.

	name – The name of the room (as it should appear in the lesson box).

	top_left – The coordinates of the top-left corner of the room.

	bottom_right – The coordinates of the bottom-right corner of the
room.

	get_along – If True, Eric will be told to get along if he’s found
in this room when the timetable doesn’t say he should be
in it.










	
add_blackboard(screen, top_left, size, chalk, skool_image)

	Add a blackboard to the room.





	Parameters:	
	screen (Screen) – The screen.

	top_left – The coordinates of the top-left of the blackboard.

	size – The size (width, height) of the blackboard.

	chalk – The chalk colour to use when writing on the blackboard.

	skool_image (Image) – An image of the skool.














	
add_chair(x)

	Add a chair to the room.





	Parameters:	x – The x-coordinate of the chair.










	
add_desk(x)

	Add a desk (that can be opened) to the room.





	Parameters:	x – The x-coordinate of the desk.










	
beside_blackboard(character)

	Return whether a character is standing beside the blackboard in this
room.





	Parameters:	character (Character) – The character to check.










	
blackboard_dirty()

	Return True if the room has a blackboard and it is dirty,
False otherwise.






	
build_blackboard_images()

	Build the images for the blackboard in this room (if any). This
method is called after rescaling the screen or loading a saved game.






	
chair(character, check_dir=True)

	Return the chair in this room that a character is next to, or
None if the character is not next to a chair.





	Parameters:	
	character (Character) – The character to check.

	check_dir – If True, return a chair only if the character is
beside one and facing the right way to sit in it;
otherwise disregard the direction in which the
character is facing.














	
contains(character)

	Return whether a character is in this room.





	Parameters:	character (Character) – The character to check.










	
desk(character)

	Return the desk in this room that a character is sitting at, or
None if the character is not sitting at a desk.





	Parameters:	character (Character) – The character to check.










	
get_blackboard_writer()

	Return the character who wrote on the blackboard in this room, or
None if either the room has no blackboard, or the blackboard is
clean.






	
get_chair_direction()

	Return the direction in which the chairs in this room are facing.





	Returns:	-1 if the chairs are facing left, 1 if they are facing right,
or None if there are no chairs in the room.










	
get_next_chair(character, move_along, go_to_back)

	Return the chair that a character should find and sit in.





	Parameters:	
	character (Character) – The character looking for a chair.

	move_along – If True (and go_to_back is False), return the
next seat along if the character is currently beside
one; otherwise return the seat closest to the
character.

	go_to_back – If True, return the back seat in the room.






	Returns:	A 2-tuple containing the target chair and the direction it
faces (-1 or 1).












	
has_blackboard()

	Return whether the room has a blackboard.






	
restore_blackboard()

	Restore the image of the blackboard in this room. This method is
used to draw the contents of a blackboard afresh after restoring a
saved game.






	
wipe_blackboard()

	Wipe the blackboard in the room (if any) and mark it as clean.













          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
scoreboard

Keep track of the score, lines total and high score.


	
class pyskool.scoreboard.Scoreboard(screen)

	The scoreboard.





	Parameters:	screen (Screen) – The screen on which the scoreboard is displayed.






	
add_lines(addend)

	Add lines to the lines total and print it.





	Parameters:	addend – The number of lines to add.










	
add_to_score(addend)

	Add points to the score and print it.





	Parameters:	addend – The number of points to add.










	
print_score_box()

	Print the score, lines total and hi-score.






	
reinitialise()

	Reinitialise the scoreboard after a game has ended. The current
score becomes the new high score if necessary, the score and lines
total are reset to zero, and all three numbers are printed.













          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
skoolbuilder

Build the skool and its cast of characters.


	
class pyskool.skoolbuilder.SkoolBuilder(path, verbose=True)

	Builds a skool and its cast from the contents of ini files.


	
build_skool(skool)

	Build a skool from the contents of the ini files.





	Parameters:	skool (Skool) – The skool to build.

















          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
skool





          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
sound





          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
staircase

Defines the Staircase class.


	
class pyskool.staircase.Staircase(bottom, top, force=False)

	A staircase.





	Parameters:	
	bottom – The coordinates of the bottom of the staircase.

	top – The coordinates of the top of the staircase.

	force – If True, the staircase must be ascended or descended when
approached (like the staircase in Back to Skool that leads up
from or down to the stage).










	
contains(character, distance=0)

	Return whether a character is (a) on a step of this staircase, or
(b) at the bottom of this staircase facing the top, or (c) at the top
of this staircase facing the bottom.





	Parameters:	
	character (Character) – The character to check.

	distance – The maximum distance to check in front of the
character.














	
contains_location(x, y)

	Return whether the location (x, y) is at the bottom, or at the
top, or on a step of this staircase.






	
supports(character)

	Return whether a character is on a step of this staircase.





	Parameters:	character (Character) – The character to check.

















          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
stinkbomb





          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
timetable

The main timetable and the skool clock.


	
class pyskool.timetable.Timetable(config)

	Represents the timetable of lessons, and the skool clock that ticks down
until the bell rings.





	Parameters:	config (dict) – Configuration parameters from the ini file.






	
add_lesson(lesson_id)

	Add a lesson to the timetable.





	Parameters:	lesson_id – The ID of the lesson.










	
add_lesson_details(lesson_id, hide_teacher, teacher_id, room_id)

	Add the details of a lesson to the timetable.





	Parameters:	
	lesson_id – The ID of the lesson.

	hide_teacher – If True, the teacher’s name (if any) will not
be printed in the lesson box for this period.

	teacher_id – The ID of the teacher supervising Eric for this
period, or an empty string if it is unsupervised.

	room_id – The ID of the room in which the lesson takes place, or
the name of the period (such as PLAYTIME) if it is
unsupervised.














	
add_special_playtime(lesson_id)

	Add a special playtime. Special playtimes do not appear in the main
timetable (though they could be inserted); occasionally a normal
playtime in the main timetable will be replaced by a special playtime.





	Parameters:	lesson_id – The ID of the special playtime.










	
get_room_id()

	Return the ID of the room Eric’s will be expected to show up in at
some point during the current period, or else the name of the period
(such as PLAYTIME).






	
get_teacher_id()

	Return the ID of the teacher supervising Eric for the current
period, or an empty string if it is an unsupervised period.






	
hide_teacher()

	Return whether the teacher’s name (if any) should be displayed in
the lesson box for the current period. This is generally True for
classroom periods, and False for any other period (supervised or
otherwise).






	
is_assembly()

	Return whether it’s Assembly.






	
is_playtime()

	Return whether it’s Playtime.






	
is_teaching_eric(character)

	Return whether a character is supervising Eric during the current
period.





	Parameters:	character (Character) – The character to check.










	
is_time_remaining(ticks)

	Return whether there is no more than a certain number of skool clock
ticks remaining before the bell rings.





	Parameters:	ticks – The number of ticks.










	
is_time_to_get_along()

	Return whether Eric should have left the classroom he was in last
period by now.






	
is_time_to_start_lesson()

	Return whether it’s time to start a lesson. When the answer is
True, teachers will stop pacing up and down outside classroom
doorways.






	
next_lesson()

	Proceed to the next lesson in the timetable. If the next lesson is
playtime and there are any special playtimes defined, one of those may
be chosen as the next lesson.






	
reinitialise()

	Reinitialise the timetable after a game has ended.






	
resume(ticks)

	Start the skool clock with a certain number of ticks remaining till
the bell rings. If the clock was previously stopped (see stop()),
it will start ticking again.





	Parameters:	ticks – The number of ticks.










	
rewind(ticks)

	Rewind the skool clock by a number of ticks.





	Parameters:	ticks – The number of ticks.










	
stop()

	Stop the skool clock. Any further attempts to make it tick will be
futile until resume() is called.






	
tick()

	Advance the skool clock by one tick (unless the clock has been
stopped).





	Returns:	True if it’s time for the bell to ring, False otherwise.










	
up_a_year()

	Take appropriate action when Eric has gone up a year. This entails
setting the skool clock so that half a normal lesson length remains
before the bell will ring.













          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          previous |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            
  
water





          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            

   Python Module Index


   
   p
   


   
     			

     		
       p	

     
       	[image: -]
       	
       pyskool	
       

     
       	
       	
       pyskool.ai	
       

     
       	
       	
       pyskool.animatorystates	
       

     
       	
       	
       pyskool.barrier	
       

     
       	
       	
       pyskool.debug	
       

     
       	
       	
       pyskool.floor	
       

     
       	
       	
       pyskool.iniparser	
       

     
       	
       	
       pyskool.items	
       

     
       	
       	
       pyskool.lesson	
       

     
       	
       	
       pyskool.lines	
       

     
       	
       	
       pyskool.location	
       

     
       	
       	
       pyskool.mutable	
       

     
       	
       	
       pyskool.room	
       

     
       	
       	
       pyskool.scoreboard	
       

     
       	
       	
       pyskool.skoolbuilder	
       

     
       	
       	
       pyskool.staircase	
       

     
       	
       	
       pyskool.timetable	
       

   



          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	Pyskool 1.2 documentation 
 
      

    


    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 


A


  	
      
  	add_answer() (pyskool.lesson.QAGenerator method)
  


      
  	add_blackboard() (pyskool.room.Room method)
  


      
  	add_chair() (pyskool.room.Room method)
  


      
  	add_command() (pyskool.ai.CommandList method)
  


      	
        
  	(pyskool.ai.CommandListTemplate method)
  


      


      
  	add_desk() (pyskool.room.Room method)
  


      
  	add_lesson() (pyskool.timetable.Timetable method)
  


      
  	add_lesson_details() (pyskool.timetable.Timetable method)
  


      
  	add_lines() (pyskool.scoreboard.Scoreboard method)
  


      
  	add_message_template() (pyskool.lesson.AssemblyMessageGenerator method)
  


      
  	add_qa_pair() (pyskool.lesson.QAGenerator method)
  


      
  	add_question() (pyskool.lesson.QAGenerator method)
  


  

  	
      
  	add_special_playtime() (pyskool.timetable.Timetable method)
  


      
  	add_to_score() (pyskool.scoreboard.Scoreboard method)
  


      
  	add_word() (pyskool.lesson.AssemblyMessageGenerator method)
  


      
  	AddLines (class in pyskool.ai)
  


      
  	aim() (pyskool.ai.FireCatapult method)
  


      	
        
  	(pyskool.ai.FireWaterPistol method)
  


        
  	(pyskool.ai.Hit method)
  


      


      
  	answer_question() (pyskool.lesson.Lesson method)
  


      
  	ARM_UP (in module pyskool.animatorystates)
  


      
  	ask_question() (pyskool.lesson.Lesson method)
  


      
  	AssemblyMessageGenerator (class in pyskool.lesson)
  


      
  	auto_shut() (pyskool.barrier.Door method)
  


  





B


  	
      
  	BACK_TO_SKOOL (in module pyskool.lines)
  


      
  	Barrier (class in pyskool.barrier)
  


      
  	BE_PUNCTUAL (in module pyskool.lines)
  


      
  	below() (pyskool.floor.Floor method)
  


      
  	BENDING_OVER (in module pyskool.animatorystates)
  


      
  	beside() (pyskool.room.Blackboard method)
  


      
  	beside_blackboard() (pyskool.room.Room method)
  


      
  	Bike (class in pyskool.mutable)
  


  

  	
      
  	BIKE_ON_FLOOR (in module pyskool.animatorystates)
  


      
  	BIKE_UPRIGHT (in module pyskool.animatorystates)
  


      
  	Blackboard (class in pyskool.room)
  


      
  	blackboard_dirty() (pyskool.room.Room method)
  


      
  	build_blackboard_images() (pyskool.room.Room method)
  


      
  	build_images() (pyskool.barrier.Door method)
  


      	
        
  	(pyskool.mutable.Bike method)
  


        
  	(pyskool.mutable.Cup method)
  


        
  	(pyskool.mutable.Flashable method)
  


        
  	(pyskool.room.Blackboard method)
  


      


      
  	build_skool() (pyskool.skoolbuilder.SkoolBuilder method)
  


  





C


  	
      
  	CATAPULT0 (in module pyskool.animatorystates)
  


      
  	CATAPULT1 (in module pyskool.animatorystates)
  


      
  	Catch (class in pyskool.ai)
  


      
  	catch_animal() (pyskool.ai.Catch method)
  


      
  	chain() (pyskool.mutable.Bike method)
  


      
  	Chair (class in pyskool.room)
  


      
  	chair() (pyskool.room.Room method)
  


      
  	ChaseEricOut (class in pyskool.ai)
  


      
  	check_cup() (pyskool.ai.JumpOffSaddle method)
  


      
  	check_eric() (pyskool.lesson.Lesson method)
  


      
  	check_eric_initial() (pyskool.lesson.Lesson method)
  


      
  	CheckIfTouchingEric (class in pyskool.ai)
  


      
  	clear() (pyskool.room.Blackboard method)
  


      
  	COME_ALONG_PREFIX (in module pyskool.lines)
  


  

  	
      
  	Command (class in pyskool.ai)
  


      
  	command() (pyskool.ai.CommandList method)
  


      
  	CommandList (class in pyskool.ai)
  


      
  	CommandListTemplate (class in pyskool.ai)
  


      
  	ComplexCommand (class in pyskool.ai)
  


      
  	ConductAssembly (class in pyskool.ai)
  


      
  	ConductClass (class in pyskool.ai)
  


      
  	ConductClassWithEric (class in pyskool.ai)
  


      
  	ConductClassWithoutEric (class in pyskool.ai)
  


      
  	CONKER (in module pyskool.animatorystates)
  


      
  	contains() (pyskool.room.NoGoZone method)
  


      	
        
  	(pyskool.room.Room method)
  


        
  	(pyskool.staircase.Staircase method)
  


      


      
  	contains_location() (pyskool.floor.Floor method)
  


      	
        
  	(pyskool.staircase.Staircase method)
  


      


      
  	coords() (pyskool.location.Location method)
  


      
  	Cup (class in pyskool.mutable)
  


  





D


  	
      
  	Desk (class in pyskool.room)
  


      
  	desk() (pyskool.room.Room method)
  


      
  	DESK_EMPTY (in module pyskool.animatorystates)
  


      
  	DESK_STINKBOMBS (in module pyskool.animatorystates)
  


      
  	DESK_WATER_PISTOL (in module pyskool.animatorystates)
  


      
  	DoAssemblyDuty (class in pyskool.ai)
  


      
  	done() (pyskool.ai.ComplexCommand method)
  


  

  	
      
  	Door (class in pyskool.barrier)
  


      
  	down() (pyskool.ai.Jump method)
  


      
  	drop() (pyskool.ai.DropStinkbomb method)
  


      
  	DropStinkbomb (class in pyskool.ai)
  


      
  	dump_water_pistol() (pyskool.ai.DumpWaterPistol method)
  


      
  	DumpWaterPistol (class in pyskool.ai)
  


  





E


  	
      
  	empty() (pyskool.room.Desk method)
  


      
  	EndGame (class in pyskool.ai)
  


      
  	error() (in module pyskool.debug)
  


  

  	
      
  	EvadeMouse (class in pyskool.ai)
  


      
  	execute() (pyskool.ai.AddLines method)
  


      	
        
  	(pyskool.ai.ChaseEricOut method)
  


        
  	(pyskool.ai.CheckIfTouchingEric method)
  


        
  	(pyskool.ai.Command method)
  


        
  	(pyskool.ai.ComplexCommand method)
  


        
  	(pyskool.ai.ConductAssembly method)
  


        
  	(pyskool.ai.ConductClass method)
  


        
  	(pyskool.ai.ConductClassWithEric method)
  


        
  	(pyskool.ai.ConductClassWithoutEric method)
  


        
  	(pyskool.ai.DoAssemblyDuty method)
  


        
  	(pyskool.ai.EndGame method)
  


        
  	(pyskool.ai.EvadeMouse method)
  


        
  	(pyskool.ai.Fall method)
  


        
  	(pyskool.ai.FallToFloor method)
  


        
  	(pyskool.ai.FetchEric method)
  


        
  	(pyskool.ai.FindEric method)
  


        
  	(pyskool.ai.FindEricIfMissing method)
  


        
  	(pyskool.ai.FindSeat method)
  


        
  	(pyskool.ai.Flight method)
  


        
  	(pyskool.ai.Floored method)
  


        
  	(pyskool.ai.Follow method)
  


        
  	(pyskool.ai.Freeze method)
  


        
  	(pyskool.ai.GoTo method)
  


        
  	(pyskool.ai.GoToRandomLocation method)
  


        
  	(pyskool.ai.GrassAndAnswerQuestions method)
  


        
  	(pyskool.ai.Grow method)
  


        
  	(pyskool.ai.HitOrFireNowAndThen method)
  


        
  	(pyskool.ai.Hop method)
  


        
  	(pyskool.ai.JumpIfOpen method)
  


        
  	(pyskool.ai.JumpIfShut method)
  


        
  	(pyskool.ai.KnockedOver method)
  


        
  	(pyskool.ai.MonitorEric method)
  


        
  	(pyskool.ai.MoveAboutUntil method)
  


        
  	(pyskool.ai.MoveBike method)
  


        
  	(pyskool.ai.MoveDeskLid method)
  


        
  	(pyskool.ai.MoveFrog method)
  


        
  	(pyskool.ai.MoveMouse method)
  


        
  	(pyskool.ai.MovePellet method)
  


        
  	(pyskool.ai.MoveWater method)
  


        
  	(pyskool.ai.Pause method)
  


        
  	(pyskool.ai.Restart method)
  


        
  	(pyskool.ai.RideBike method)
  


        
  	(pyskool.ai.Say method)
  


        
  	(pyskool.ai.SetClock method)
  


        
  	(pyskool.ai.SetControllingCommand method)
  


        
  	(pyskool.ai.SetRestartPoint method)
  


        
  	(pyskool.ai.SetSubcommand method)
  


        
  	(pyskool.ai.ShadowEric method)
  


        
  	(pyskool.ai.Signal method)
  


        
  	(pyskool.ai.SitStill method)
  


        
  	(pyskool.ai.StalkAndHit method)
  


        
  	(pyskool.ai.StartAssemblyIfReady method)
  


        
  	(pyskool.ai.StartDinnerIfReady method)
  


        
  	(pyskool.ai.StartLessonIfReady method)
  


        
  	(pyskool.ai.Stink method)
  


        
  	(pyskool.ai.StopEric method)
  


        
  	(pyskool.ai.TellClassWhatToDo method)
  


        
  	(pyskool.ai.TellEric method)
  


        
  	(pyskool.ai.TellEricAndWait method)
  


        
  	(pyskool.ai.TellKidsToSitDown method)
  


        
  	(pyskool.ai.TripPeopleUp method)
  


        
  	(pyskool.ai.Unsignal method)
  


        
  	(pyskool.ai.WaitAtDoor method)
  


        
  	(pyskool.ai.WaitUntil method)
  


        
  	(pyskool.ai.WalkAround method)
  


        
  	(pyskool.ai.WalkFast method)
  


        
  	(pyskool.ai.WalkUpOrDown method)
  


        
  	(pyskool.ai.WatchForEric method)
  


        
  	(pyskool.ai.Write method)
  


        
  	(pyskool.ai.WriteOnBoard method)
  


        
  	(pyskool.ai.WriteOnBoardUnless method)
  


      


  





F


  	
      
  	Fall (class in pyskool.ai)
  


      
  	fall() (pyskool.ai.JumpOffSaddle method)
  


      
  	FallToFloor (class in pyskool.ai)
  


      
  	fetch_eric() (pyskool.lesson.Lesson method)
  


      
  	FetchEric (class in pyskool.ai)
  


      
  	fill() (pyskool.mutable.Cup method)
  


      
  	find_spot_to_sit() (pyskool.ai.SitForAssembly method)
  


      
  	FindEric (class in pyskool.ai)
  


      
  	FindEricIfMissing (class in pyskool.ai)
  


      
  	FindSeat (class in pyskool.ai)
  


      
  	finish() (pyskool.ai.Command method)
  


      	
        
  	(pyskool.ai.Say method)
  


        
  	(pyskool.ai.WalkFast method)
  


      


      
  	finish_kiss() (pyskool.ai.Kiss method)
  


      
  	finished_speaking() (pyskool.lesson.Lesson method)
  


  

  	
      
  	fire() (pyskool.ai.FireCatapult method)
  


      	
        
  	(pyskool.ai.FireWaterPistol method)
  


      


      
  	FireCatapult (class in pyskool.ai)
  


      
  	FireNowAndThen (class in pyskool.ai)
  


      
  	FireWaterPistol (class in pyskool.ai)
  


      
  	flash() (pyskool.mutable.Flashable method)
  


      
  	Flashable (class in pyskool.mutable)
  


      
  	Flight (class in pyskool.ai)
  


      
  	Floor (class in pyskool.floor)
  


      
  	Floored (class in pyskool.ai)
  


      
  	FLY (in module pyskool.animatorystates)
  


      
  	Follow (class in pyskool.ai)
  


      
  	Freeze (class in pyskool.ai)
  


      
  	FROG (in module pyskool.items)
  


  





G


  	
      
  	generate_message() (pyskool.lesson.AssemblyMessageGenerator method)
  


      
  	GET_ALONG (in module pyskool.lines)
  


      
  	get_blackboard_writer() (pyskool.room.Room method)
  


      
  	get_chair_direction() (pyskool.room.Room method)
  


      
  	get_command() (pyskool.ai.FireNowAndThen method)
  


      	
        
  	(pyskool.ai.HitNowAndThen method)
  


      


      
  	get_command_class() (in module pyskool.ai)
  


      
  	get_commands() (pyskool.ai.Catch method)
  


      	
        
  	(pyskool.ai.CommandListTemplate method)
  


        
  	(pyskool.ai.DropStinkbomb method)
  


        
  	(pyskool.ai.DumpWaterPistol method)
  


        
  	(pyskool.ai.FireCatapult method)
  


        
  	(pyskool.ai.FireWaterPistol method)
  


        
  	(pyskool.ai.Hit method)
  


        
  	(pyskool.ai.Jump method)
  


        
  	(pyskool.ai.JumpOffSaddle method)
  


        
  	(pyskool.ai.Kiss method)
  


        
  	(pyskool.ai.MoveDoor method)
  


        
  	(pyskool.ai.ReleaseMice method)
  


        
  	(pyskool.ai.SitForAssembly method)
  


        
  	(pyskool.ai.WipeBoard method)
  


      


      
  	get_config() (pyskool.iniparser.IniParser method)
  


      
  	get_GoTo_destination() (pyskool.ai.CommandList method)
  


      
  	get_images() (pyskool.barrier.Door method)
  


      	
        
  	(pyskool.mutable.Bike method)
  


        
  	(pyskool.mutable.Cup method)
  


        
  	(pyskool.mutable.Flashable method)
  


      


      
  	get_next_chair() (pyskool.room.Room method)
  


      
  	GET_OFF_PLANT (in module pyskool.lines)
  


      
  	GET_OUT (in module pyskool.lines)
  


      
  	get_question() (pyskool.lesson.Lesson method)
  


      
  	get_room_id() (pyskool.timetable.Timetable method)
  


  

  	
      
  	get_teacher_id() (pyskool.timetable.Timetable method)
  


      
  	GET_UP (in module pyskool.lines)
  


      
  	get_up() (pyskool.ai.SitForAssembly method)
  


      
  	give_lines() (pyskool.lesson.Lesson method)
  


      
  	give_lines_for_hitting() (pyskool.lesson.Lesson method)
  


      
  	give_lines_for_writing() (pyskool.lesson.Lesson method)
  


      
  	GoTo (class in pyskool.ai)
  


      
  	GoToRandomLocation (class in pyskool.ai)
  


      
  	GoTowardsXY (class in pyskool.ai)
  


      
  	GoToXY (class in pyskool.ai)
  


      
  	grass_for_hitting() (pyskool.lesson.Lesson method)
  


      
  	grass_for_writing() (pyskool.lesson.Lesson method)
  


      
  	GrassAndAnswerQuestions (class in pyskool.ai)
  


      
  	Grow (class in pyskool.ai)
  


  





H


  	
      
  	has_blackboard() (pyskool.room.Room method)
  


      
  	has_special_question() (pyskool.lesson.QAGenerator method)
  


      
  	hide_teacher() (pyskool.timetable.Timetable method)
  


      
  	Hit (class in pyskool.ai)
  


      
  	hit() (pyskool.ai.Hit method)
  


      
  	HitNowAndThen (class in pyskool.ai)
  


  

  	
      
  	HitOrFireNowAndThen (class in pyskool.ai)
  


      
  	HITTING0 (in module pyskool.animatorystates)
  


      
  	HITTING1 (in module pyskool.animatorystates)
  


      
  	Hop (class in pyskool.ai)
  


      
  	HOP1 (in module pyskool.animatorystates)
  


      
  	HOP2 (in module pyskool.animatorystates)
  


  





I


  	
      
  	impedes() (pyskool.barrier.Barrier method)
  


      
  	IniParser (class in pyskool.iniparser)
  


      
  	initialise_special_answer() (pyskool.lesson.QAGenerator method)
  


      
  	insert() (pyskool.room.Desk method)
  


      
  	insert_frog() (pyskool.mutable.Cup method)
  


      
  	is_assembly() (pyskool.timetable.Timetable method)
  


      
  	is_dirty() (pyskool.room.Blackboard method)
  


      
  	is_door() (pyskool.barrier.Barrier method)
  


      	
        
  	(pyskool.barrier.Door method)
  


      


      
  	is_empty() (pyskool.mutable.Cup method)
  


      
  	is_eric_absent() (pyskool.lesson.Lesson method)
  


  

  	
      
  	is_GoTo() (pyskool.ai.Command method)
  


      	
        
  	(pyskool.ai.GoTo method)
  


      


      
  	is_GoToing() (pyskool.ai.CommandList method)
  


      
  	is_interruptible() (pyskool.ai.AddLines method)
  


      	
        
  	(pyskool.ai.Command method)
  


        
  	(pyskool.ai.CommandList method)
  


        
  	(pyskool.ai.DropStinkbomb method)
  


        
  	(pyskool.ai.EvadeMouse method)
  


        
  	(pyskool.ai.Fall method)
  


        
  	(pyskool.ai.FireCatapult method)
  


        
  	(pyskool.ai.FireWaterPistol method)
  


        
  	(pyskool.ai.Floored method)
  


        
  	(pyskool.ai.Grow method)
  


        
  	(pyskool.ai.Hit method)
  


        
  	(pyskool.ai.Hop method)
  


        
  	(pyskool.ai.MoveBike method)
  


        
  	(pyskool.ai.MoveDoor method)
  


        
  	(pyskool.ai.MoveFrog method)
  


        
  	(pyskool.ai.MoveMouse method)
  


        
  	(pyskool.ai.MovePellet method)
  


        
  	(pyskool.ai.MoveWater method)
  


        
  	(pyskool.ai.WipeBoard method)
  


        
  	(pyskool.ai.WriteOnBoard method)
  


      


      
  	is_playtime() (pyskool.timetable.Timetable method)
  


      
  	is_shut() (pyskool.barrier.Barrier method)
  


      	
        
  	(pyskool.barrier.Door method)
  


      


      
  	is_teaching_eric() (pyskool.timetable.Timetable method)
  


      
  	is_time_remaining() (pyskool.timetable.Timetable method)
  


      
  	is_time_to_get_along() (pyskool.timetable.Timetable method)
  


      
  	is_time_to_start_lesson() (pyskool.timetable.Timetable method)
  


  





J


  	
      
  	join() (pyskool.lesson.Lesson method)
  


      
  	Jump (class in pyskool.ai)
  


      
  	jump() (pyskool.ai.CommandList method)
  


  

  	
      
  	JumpIfOpen (class in pyskool.ai)
  


      
  	JumpIfShut (class in pyskool.ai)
  


      
  	JumpOffSaddle (class in pyskool.ai)
  


  





K


  	
      
  	Kiss (class in pyskool.ai)
  


      
  	KISSING_ERIC (in module pyskool.animatorystates)
  


      
  	KNOCKED_OUT (in module pyskool.animatorystates)
  


  

  	
      
  	KNOCKED_OVER (in module pyskool.animatorystates)
  


      
  	KnockedOver (class in pyskool.ai)
  


  





L


  	
      
  	Lesson (class in pyskool.lesson)
  


      
  	Location (class in pyskool.location)
  


      
  	log() (in module pyskool.debug)
  


  

  	
      
  	lower() (pyskool.ai.DropStinkbomb method)
  


      	
        
  	(pyskool.ai.FireCatapult method)
  


        
  	(pyskool.ai.FireWaterPistol method)
  


        
  	(pyskool.ai.Hit method)
  


      


      
  	lower_arm() (pyskool.ai.MoveDoor method)
  


      	
        
  	(pyskool.ai.WipeBoard method)
  


      


  





M


  	
      
  	MonitorEric (class in pyskool.ai)
  


      
  	MOUSE (in module pyskool.items)
  


      
  	move() (pyskool.barrier.Door method)
  


      
  	move_door() (pyskool.ai.MoveDoor method)
  


      
  	MoveAboutUntil (class in pyskool.ai)
  


      
  	MoveBike (class in pyskool.ai)
  


  

  	
      
  	MoveDeskLid (class in pyskool.ai)
  


      
  	MoveDoor (class in pyskool.ai)
  


      
  	MoveFrog (class in pyskool.ai)
  


      
  	MoveMouse (class in pyskool.ai)
  


      
  	MovePellet (class in pyskool.ai)
  


      
  	MoveWater (class in pyskool.ai)
  


  





N


  	
      
  	NEVER_AGAIN (in module pyskool.lines)
  


      
  	newline() (pyskool.room.Blackboard method)
  


      
  	next_lesson() (pyskool.timetable.Timetable method)
  


      
  	next_swot_action() (pyskool.lesson.Lesson method)
  


      
  	next_teacher_action() (pyskool.lesson.Lesson method)
  


      
  	NO_BIKES (in module pyskool.lines)
  


      
  	NO_CATAPULTS (in module pyskool.lines)
  


      
  	NO_HITTING (in module pyskool.lines)
  


  

  	
      
  	NO_JUMPING (in module pyskool.lines)
  


      
  	NO_SITTING_ON_STAIRS (in module pyskool.lines)
  


      
  	NO_STINKBOMBS (in module pyskool.lines)
  


      
  	NO_TALES (in module pyskool.lines)
  


      
  	NO_WATERPISTOLS (in module pyskool.lines)
  


      
  	NO_WRITING (in module pyskool.lines)
  


      
  	NoGoZone (class in pyskool.room)
  


  





O


  	
      
  	OpenDoor (class in pyskool.ai)
  


  





P


  	
      
  	parse_section() (pyskool.iniparser.IniParser method)
  


      
  	Pause (class in pyskool.ai)
  


      
  	PLANT_GROWING (in module pyskool.animatorystates)
  


      
  	PLANT_GROWN (in module pyskool.animatorystates)
  


      
  	prepare_qa() (pyskool.lesson.QAGenerator method)
  


      
  	prepare_special_qa() (pyskool.lesson.QAGenerator method)
  


      
  	print_score_box() (pyskool.scoreboard.Scoreboard method)
  


      
  	pyskool.ai (module)
  


      
  	pyskool.animatorystates (module)
  


      
  	pyskool.barrier (module)
  


      
  	pyskool.debug (module)
  


      
  	pyskool.floor (module)
  


  

  	
      
  	pyskool.iniparser (module)
  


      
  	pyskool.items (module)
  


      
  	pyskool.lesson (module)
  


      
  	pyskool.lines (module)
  


      
  	pyskool.location (module)
  


      
  	pyskool.mutable (module)
  


      
  	pyskool.room (module)
  


      
  	pyskool.scoreboard (module)
  


      
  	pyskool.skoolbuilder (module)
  


      
  	pyskool.staircase (module)
  


      
  	pyskool.timetable (module)
  


  





Q


  	
      
  	QAGenerator (class in pyskool.lesson)
  


  





R


  	
      
  	raise_arm() (pyskool.ai.DropStinkbomb method)
  


      	
        
  	(pyskool.ai.MoveDoor method)
  


      


      
  	reach() (pyskool.ai.JumpOffSaddle method)
  


      
  	ready() (pyskool.ai.FireNowAndThen method)
  


      	
        
  	(pyskool.ai.HitNowAndThen method)
  


        
  	(pyskool.ai.HitOrFireNowAndThen method)
  


      


      
  	reinitialise() (pyskool.scoreboard.Scoreboard method)
  


      	
        
  	(pyskool.timetable.Timetable method)
  


      


      
  	release_mice() (pyskool.ai.ReleaseMice method)
  


      
  	ReleaseMice (class in pyskool.ai)
  


      
  	remove_frog() (pyskool.mutable.Cup method)
  


      
  	Restart (class in pyskool.ai)
  


      
  	restart() (pyskool.ai.CommandList method)
  


      	
        
  	(pyskool.ai.ComplexCommand method)
  


      


      
  	restore() (pyskool.room.Blackboard method)
  


  

  	
      
  	restore_blackboard() (pyskool.room.Room method)
  


      
  	resume() (pyskool.timetable.Timetable method)
  


      
  	return_to_base() (pyskool.lesson.Lesson method)
  


      
  	rewind() (pyskool.timetable.Timetable method)
  


      
  	RideBike (class in pyskool.ai)
  


      
  	RIDING_BIKE0 (in module pyskool.animatorystates)
  


      
  	RIDING_BIKE1 (in module pyskool.animatorystates)
  


      
  	rise() (pyskool.ai.JumpOffSaddle method)
  


      
  	Room (class in pyskool.room)
  


      
  	RUN (in module pyskool.animatorystates)
  


  





S


  	
      
  	Safe (class in pyskool.mutable)
  


      
  	SAFE_KEY (in module pyskool.items)
  


      
  	Say (class in pyskool.ai)
  


      
  	Scoreboard (class in pyskool.scoreboard)
  


      
  	seat() (pyskool.room.Chair method)
  


      
  	separates() (pyskool.barrier.Wall method)
  


      
  	set_controlling_command() (pyskool.ai.CommandList method)
  


      
  	set_GoTo_destination() (pyskool.ai.CommandList method)
  


      
  	set_images() (pyskool.barrier.Door method)
  


      	
        
  	(pyskool.mutable.Bike method)
  


        
  	(pyskool.mutable.Cup method)
  


      


      
  	set_restart_point() (pyskool.ai.CommandList method)
  


      
  	set_special_group() (pyskool.lesson.QAGenerator method)
  


      
  	set_subcommand() (pyskool.ai.CommandList method)
  


      
  	set_template() (pyskool.ai.CommandList method)
  


      
  	SetClock (class in pyskool.ai)
  


      
  	SetControllingCommand (class in pyskool.ai)
  


      
  	SetRestartPoint (class in pyskool.ai)
  


      
  	SetSubcommand (class in pyskool.ai)
  


      
  	ShadowEric (class in pyskool.ai)
  


      
  	SHERRY_DROP (in module pyskool.animatorystates)
  


      
  	SHERRY_PISTOL (in module pyskool.items)
  


      
  	Shield (class in pyskool.mutable)
  


      
  	shows() (pyskool.room.Blackboard method)
  


      
  	ShutDoor (class in pyskool.ai)
  


      
  	Signal (class in pyskool.ai)
  


      
  	SIT (in module pyskool.animatorystates)
  


      
  	SIT_DOWN (in module pyskool.lines)
  


  

  	
      
  	sit_down() (pyskool.ai.SitForAssembly method)
  


      
  	SIT_FACING_STAGE (in module pyskool.lines)
  


      
  	SitForAssembly (class in pyskool.ai)
  


      
  	SitStill (class in pyskool.ai)
  


      
  	SITTING_ON_CHAIR (in module pyskool.animatorystates)
  


      
  	SITTING_ON_FLOOR (in module pyskool.animatorystates)
  


      
  	SkoolBuilder (class in pyskool.skoolbuilder)
  


      
  	Staircase (class in pyskool.staircase)
  


      
  	StalkAndHit (class in pyskool.ai)
  


      
  	stand_up() (pyskool.ai.Catch method)
  


      	
        
  	(pyskool.ai.DumpWaterPistol method)
  


        
  	(pyskool.ai.ReleaseMice method)
  


      


      
  	start_kiss() (pyskool.ai.Kiss method)
  


      
  	StartAssemblyIfReady (class in pyskool.ai)
  


      
  	StartDinnerIfReady (class in pyskool.ai)
  


      
  	StartLessonIfReady (class in pyskool.ai)
  


      
  	STAY_IN_CLASS (in module pyskool.lines)
  


      
  	Stink (class in pyskool.ai)
  


      
  	STINKBOMB (in module pyskool.animatorystates)
  


      
  	STINKBOMBS1 (in module pyskool.items)
  


      
  	STINKBOMBS2 (in module pyskool.items)
  


      
  	STINKBOMBS3 (in module pyskool.items)
  


      
  	stop() (pyskool.timetable.Timetable method)
  


      
  	StopEric (class in pyskool.ai)
  


      
  	STOREROOM_KEY (in module pyskool.items)
  


      
  	supports() (pyskool.floor.Floor method)
  


      	
        
  	(pyskool.staircase.Staircase method)
  


      


      
  	switch() (pyskool.lesson.Lesson method)
  


  





T


  	
      
  	tell_class_what_to_do() (pyskool.lesson.Lesson method)
  


      
  	TellClassWhatToDo (class in pyskool.ai)
  


      
  	TellEric (class in pyskool.ai)
  


      
  	TellEricAndWait (class in pyskool.ai)
  


  

  	
      
  	TellKidsToSitDown (class in pyskool.ai)
  


      
  	tick() (pyskool.timetable.Timetable method)
  


      
  	Timetable (class in pyskool.timetable)
  


      
  	TripPeopleUp (class in pyskool.ai)
  


  





U


  	
      
  	unchain() (pyskool.mutable.Bike method)
  


      
  	unflash() (pyskool.mutable.Flashable method)
  


      
  	Unsignal (class in pyskool.ai)
  


  

  	
      
  	up() (pyskool.ai.Jump method)
  


      
  	up_a_year() (pyskool.timetable.Timetable method)
  


  





V


  	
      
  	vacate() (pyskool.room.Chair method)
  


  





W


  	
      
  	WaitAtDoor (class in pyskool.ai)
  


      
  	WaitUntil (class in pyskool.ai)
  


      
  	walk() (pyskool.ai.WipeBoard method)
  


      
  	WALK0 (in module pyskool.animatorystates)
  


      
  	WALK1 (in module pyskool.animatorystates)
  


      
  	WALK2 (in module pyskool.animatorystates)
  


      
  	WALK3 (in module pyskool.animatorystates)
  


      
  	walk_to_board() (pyskool.lesson.Lesson method)
  


      
  	walk_up_or_down() (pyskool.lesson.Lesson method)
  


      
  	WalkAround (class in pyskool.ai)
  


      
  	WalkFast (class in pyskool.ai)
  


      
  	WalkUpOrDown (class in pyskool.ai)
  


      
  	Wall (class in pyskool.barrier)
  


      
  	WatchForEric (class in pyskool.ai)
  


      
  	WATER0 (in module pyskool.animatorystates)
  


      
  	WATER1 (in module pyskool.animatorystates)
  


  

  	
      
  	WATER2 (in module pyskool.animatorystates)
  


      
  	WATER3 (in module pyskool.animatorystates)
  


      
  	WATER4 (in module pyskool.animatorystates)
  


      
  	WATER_DROP (in module pyskool.animatorystates)
  


      
  	WATER_PISTOL (in module pyskool.items)
  


      
  	WATERPISTOL (in module pyskool.animatorystates)
  


      
  	Window (class in pyskool.barrier)
  


      
  	wipe() (pyskool.ai.WipeBoard method)
  


      	
        
  	(pyskool.room.Blackboard method)
  


      


      
  	wipe_blackboard() (pyskool.room.Room method)
  


      
  	wipe_board() (pyskool.lesson.Lesson method)
  


      
  	WipeBoard (class in pyskool.ai)
  


      
  	Write (class in pyskool.ai)
  


      
  	write() (pyskool.room.Blackboard method)
  


      
  	write_on_board() (pyskool.lesson.Lesson method)
  


      
  	WriteOnBoard (class in pyskool.ai)
  


      
  	WriteOnBoardUnless (class in pyskool.ai)
  


  







          

      

      

    


    
         Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  _static/plus.png





_static/minus.png





_static/comment.png





_static/up.png





_static/down.png





_static/ajax-loader.gif





_static/comment-close.png





_static/up-pressed.png





search.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Pyskool 1.2 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2015, Richard Dymond.
      Created using Sphinx 1.2.2.
    

  

_static/down-pressed.png





_static/file.png





_static/comment-bright.png





